

HIWIN INDUSTRIE 4.0 Best Partner

Multi-Axis Robot

Pick-and-Place / Assembly / Array and Packaging / Semiconductor / Electro-Optical Industry /

- Automotive Industry / Food Industry
- Delta Robot
- Articulated Robot SCARA Robot
- Wafer Robot
- Electric Gripper
- Integrated Electric Gripper
- Rotary Joint

Single-Axis Robot

Precision / Semiconductor / Medical / FPD

- KK, SK
- KS, KA
- KU, KE, KC

Torque Motor **Rotary Table**

Medical / Automotive Industry / Machine Tools / Machinery Industry

- RAB Series
- RAS Series
- RCV Series RCH Series

Ballscrew

Precision Ground / Rolled

- Super S Series
- Super T Series
- Mini Roller Ecological & Economical
- Lubrication Module E2 Rotating Nut (R1)
- Energy-Saving & Thermal-Controlling (Cool Type)
- Heavy Load Series (RD)
- Ball Spline

Linear Guideway

Automation / Semiconductor / Medical

- Ball Type--HG, EG, WE, MG, CG • Quiet Type--QH, QE, QW, QR
- Other--RG, E2, PG, SE, RC

Bearing

Machine Tools / Robot

- Crossed Roller Bearing
- Ballscrew Bearing
- Linear Bearing
- Support Unit

DATORKER® Strain Wave Gear

Robot / Automation Equipment / Semiconductor Equipment / Machine Tools

- DSC-P0 Type
- DSC-CO Type
- DSH-PH Type
- DSH-AH Type

AC Servo Motor & Drive

Semiconductor / Packaging Machine / SMT / Food Industry / LCD

- Drives--D1, D2T/D2T-LM, E1
- Motors--50W~2000W

Medical Equipment

Hospital / Rehabilitation Centers / Nursing Homes
Robotic Gait Training System

- Robotic Endoscope Holder

Linear Motor Stage

Automated Transport / AOI Application / Precision / Semiconductor

- Iron-core Linear Motor
- · Coreless Linear Motor
- Linear Turbo Motor LMT
- Planar Servo Motor Air Bearing Platform
- X-Y Stage Gantry Systems
- Single-Axis Linear Motor Stage

Torque Motor & **Direct Drive Motor**

Machine Tools

Torque Motor-

TM-2/IM-2, TMRW Series

Inspection / Testing Equipment / Robot

• Direct Drive Motor--DMS, DMY, DMN, DMT Series

HIWIN®

Linear Guideways

Technical Information Index

P	refac	:e	1
1		eral Information	
	1-1	Advantages and Features of Linear Guideways	1
	1-2	The Principles of Selecting Linear Guideways	2
	1-3	Basic Load Rating of Linear Guideways	3
	1-4	The Service Life of Linear Guideways	
	1-5	Acting Loads	
	1-6	Friction	
	1-7	Preload and Stiffness	
	1-8	Lubrication	
	1-9	The Butt-joint Rail	
		Mounting Configurations	
	1-11	Mounting Procedures	12
2	. HIW	IN Linear Guideway Product Series	19
	2-1	HG Series – Heavy Load Ball Type Linear Guideway	22
	2-2	EG Series – Low Profile Ball Type Linear Guideway	44
	2-3	WE Series – Four-Row Wide Rail Linear Guideway	61
	2-4	MG Series – Miniature Linear Guideway	
	2-5	QH Series – Heavy Load Type Linear Guideway, with SynchMotion® Technology	
	2-6	QE Series – Low Profile Linear Guideway, with SynchMotion® Technology	
	2-7	QW Series – Wide Rail Linear Guideway, with SynchMotion® Technology	121
	2-8	CG Series – Superior Rolling Moment with Cover Strip Linear Guideway	
	2-9	3 3 , , , , , ,	
		CRG Series - High Rigidity Roller Type Linear Guideway with Cover Strip	
		QR Series – Roller Type Linear Guideway, with SynchMotion® Technology	
		AG Series – Angle Linear Guideway	
		E2 Type – Self Lubrication Kit for Linear Guideway	
		PG Type – Positioning Guideway	
		SE Type – Metal End Cap Linear Guideway	
		Stainless Steel Linear Guideway	
		RC Type – Reinforced Cap	
	2-18	Grease	235
3	.HIWI	N Linear Guideway Inquiry Form	239

Preface

A linear guideway allows a type of linear motion that utilizes rolling elements such as balls or rollers. By using recirculating rolling elements between the rail and the block, a linear guideway can achieve high precision linear motion. Compared to a traditional slide, the coefficient of friction for a linear guideway is only 1/50. Because of the restraint effect between the rails and the blocks, linear guideways can take up loads in both the up/down and the left/right directions. With these features, linear guideways can greatly enhance moving accuracy, especially, when accompanied with precise ball screws.

1. General Information

1-1 Advantages and Features of Linear Guideways

(1) High positional accuracy

When a load is driven by a linear motion guideway, the frictional contact between the load and the bed desk is rolling contact. The coefficient of friction is only 1/50 of traditional contact, and the difference between the dynamic and the static coefficient of friction is small. Therefore, there would be no slippage while the load is moving.

(2) Long life with high motion accuracy

With a traditional slide, errors in accuracy are caused by the counter flow of the oil film. Insufficient lubrication causes wear between the contact surfaces, which become increasingly inaccurate. In contrast, rolling contact has little wear; therefore, machines can achieve a long life with highly accurate motion.

(3) High speed motion is possible with a low driving force

Because linear guideways have little friction resistance, only a small driving force is needed to move a load. This results in greater power savings, especially in the moving parts of a system. This is especially true for the reciprocating parts.

(4) Equal loading capacity in all directions

With this special design, these linear guideways can take loads in either the vertical or horizontal directions. Conventional linear slides can only take small loads in the direction parallel to the contact surface. They are also more likely to become inaccurate when they are subjected to these loads.

(5) Easy installation

Installing a linear guideway is fairly easy. Grinding or milling the machine surface, following the recommended installation procedure, and tightening the bolts to their specified torque can achieve highly accurate linear motion.

(6) Easy lubrication

With a traditional sliding system, insufficient lubrication causes wear on the contact surfaces. Also, it can be quite difficult to supply sufficient lubrication to the contact surfaces because finding an appropriate lubrication point is not very easy. With a linear motion guideway, grease can be easily supplied through the grease nipple on the linear guideway block. It is also possible to utilize a centralized oil lubrication system by piping the lubrication oil to the piping joint.

(7) Interchangeability

Compared with traditional boxways or v-groove slides, linear guideways can be easily replaced should any damage occur. For high precision grades consider ordering a matched, non-interchangeable, assembly of a block and rail.

1-2 The Principles of Selecting Linear Guideways

Identify the condition

- Type of equipment
- Space limitations
- Accuracy
 - Stiffness
 - Travel length
- Magnitude and direction of loads
- Moving speed, acceleration
- Duty cycle
- Service life
- Environment

Selection of series

- O HG/CG series Grinding, milling, and drilling machine, lathe, machine center
- EG series Automatic equipment, high speed transfer device, semiconductor equipment, wood cutting machine, precision measure equipment
- QE/QH series precision measure equipment, semiconductor equipment, Automatic equipment, laser marking machine, can be widely applied in high-tech industry required high speed, low noise, low dust generation.
- WE/QW series Automatic device, transportation device, precision measure equipment, semiconductor equipment, blow moulding machine, single axis robotrobotics.
- MG series Miniature device, semiconductor equipment, medical equipment
- RG/QR/CRG series CNC machining centers, heavy duty cutting machines, CNC grinding machines, injection molding machines, electric discharge machines, wire cutting machines, plano millers
- AG Series: Sliding Head Lathe (Swiss lathe), Vibration Test Machine, Automated Robot Dispenser, XY moving platform, Measuring instrument, Vertical Lathe, Slant Bed Lathes

Selection of accuracy

O Classes: C, H, P, SP, UP depends on the accuracy of equipment

Determines the size & the number of blocks

- Dvnamic load condition
- If accompanied with a ballscrew, the size should be similar to the diameter of ballscrew. For example, if the diameter of the ballscrew is 35mm, then the model size of linear guideway should be HG35

Calculate the max. load of block

- Make reference to load calculation examples, and calculate the max load.
- Be sure that the static safety factor of selected guideway is larger than the rated static safety factor

Choosing preload

Depends on the stiffness requirement and accuracy of mounting surface

Identify stiffness

• Calculate the deformation (8) by using the table of stiffness values, choosing heavier preload and larger size linear guideways to enhance the stiffness

Calculating service life

- Calculate the life time requirement by using the moving speed and frequency.
- Make reference to the life calculation example

Selection of lubrication

- Grease supplied by grease nipple
- Oil supplied by piping joint

Completion of selection

1-3 Basic Load Ratings of Linear Guideways


1-3-1 Basic Static Load

(1) Static load rating (C₀)

Localized permanent deformation will be caused between the raceway surface and the rolling elements when a linear guideway is subjected to an excessively large load or an impact load while either at rest or in motion. If the amount of this permanent deformation exceeds a certain limit, it becomes an obstacle to the smooth operation of the linear guideway. Generally, the definition of the basic static load rating is a static load of constant magnitude and direction resulting in a total permanent deformation of 0.0001 times the diameter of the rolling element and the raceway at the contact point subjected to the largest stress. The value is described in the dimension tables for each linear guideway. A designer can select a suitable linear guideway by referring to these tables. The maximum static load applied to a linear guideway must not exceed the basic static load rating.

(2) Static permissible moment (M₀)

The static permissible moment refers to a moment in a given direction and magnitude when the largest stress of the rolling elements in an applied system equals the stress induced by the Static Load Rating. The static permissible moment in linear motion systems is defined for three directions: M_R, M_P and M_Y.

(3) Static safety factor

This condition applys when the guideway system is static or under low speed motion. The static safety factor, which depends on environmental and operating conditions, must be taken into consideration. A larger safety factor is especially important for guideways subject to impact loads (See Table 1-1). The static load can be obtained by using Eq. 1.1

Table 1-1 Static Safety Factor

Load Condition	f _{SL} , f _{SM} (Min.)
Normal Load	1.0~3.0
With impacts/vibrations	3.0~5.0

$$f_{SL} = \frac{C_0}{P} \text{ or } f_{SM} = \frac{M_0}{M}$$
 Eq.1.1

 f_{SL} : Static safety factor for simple load f_{SM} : Static safety factor for moment

C₀: Static load rating (kN)

M₀: Static permissible moment (kN•mm) P: Calculated working load (kN)

M: Calculated appling moment (kN•mm)

1-3-2 Basic Dynamic Load

(1) Dynamic load rating (C)

The basic dynamic load rating is an important factor used for calculation of service life of linear guideway. It is defined as the maximum load when the load that does not change in direction or magnitude and results in a nominal life of 50km of operation for a ball type linear guideway and 100km for a roller type linear guideway. The values for the basic dynamic load rating of each guideway are shown in dimension tables. They can be used to predict the service life for a selected linear guideway.

1-4 The Service Life of Linear Guideways

1-4-1 Service Life

When the raceway and the rolling elements of a linear guideway are continuously subjected to repeated stresses, the raceway surface shows fatigue. Flaking will eventually occur. This is called fatigue flaking. The life of a linear guideway is defined as the total distance traveled until fatigue flaking appears on the surface of the raceway or rolling elements.

1-4-2 Nominal Life (L)

The service life varies greatly even when the linear motion guideways are manufactured in the same way or operated under the same motion conditions. For this reason, nominal life is used as the criteria for predicting the service life of a linear motion guideway. The nominal life is the total distance that 90% of a group of identical linear motion guideways, operated under identical conditions, can travel without flaking. When the basic dynamic rated load is applied to a linear motion guideway, the nominal life is 50km.

1-4-3 Calculation of Nominal Life

The acting load will affect the nominal life of a linear guideway. Based on the selected basic dynamic rated load and the actual load. The nominal life of ball type and roller type linear guideway can be calculated by Eq.1.2 and Eq. 1.3 respectively.

Ball type:
$$L = \left(\frac{C}{P}\right)^3 \cdot 50 \text{ km} = \left(\frac{C}{P}\right)^3 \cdot 31 \text{ mile}$$
 Eq.1.2

Roller type:
$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} 100 \text{km} = \left(\frac{C}{P}\right)^{\frac{10}{3}} 62 \text{mile}$$
 Eq.1.3

- L: Nominal life
- C: Basic dynamic load rating
- P: Actual load

If the environmental factors are taken into consideration, the nominal life is influenced greatly by the motion conditions, the hardness of the raceway, and the temperature of the linear guideway. The relationship between these factors is expressed in Eq.1.4 and Eq. 1.5.

Ball type:
$$L = \left(\frac{f_h \cdot f_t \cdot C}{f_w \cdot P_c}\right)^3 \cdot 50 \text{km} = \left(\frac{f_h \cdot f_t \cdot C}{f_w \cdot P_c}\right)^3 \cdot 31 \text{mile}$$
 Eq.1.4

Roller type: L=
$$\left(\frac{f_h \cdot f_t \cdot C}{f_w \cdot P_c}\right)^{\frac{10}{3}} 100 \text{km} = \left(\frac{f_h \cdot f_t \cdot C}{f_w \cdot P_c}\right)^{\frac{10}{3}} 62 \text{mile}$$
 Eq.1.5

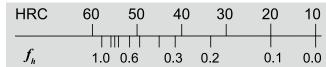
L : Nominal life

fh: Hardness factor

C: Basic dynamic load rating

ft : Temperature factor

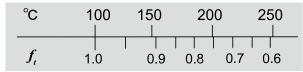
Pc: Calculated load


 $f_W\,:\, Load\, factor$

1-4-4 Factors of Normal Life

(1) Hardness factor (f_h)

In general, the raceway surface in contact with the rolling elements must have the hardness of HRC 58~62 to an appropriate depth. When the specified hardness is not obtained, the permissible load is reduced and the nominal life is decreased. In this situation, the basic dynamic load rating and the basic static load rating must be multiplied by the hardness factor for calculation.


Raceway hardness

(2) Temperature factor (ft)

Due to the temperature will affect the material of linear guide, therefore the permissible load will be reduced and the nominal service life will be decreased when over 100°C. Therefore, the basic dynamic and static load rating must be multiplied by the temperature factor. As some accessories are plastic which can't resist high temperature, the working environment is recommended to be lower than 100°C.

Temperature

(3) Load factor (fw)

The loads acting on a linear guideway include the weight of slide, the inertia load at the times of start and stop, and the moment loads caused by overhanging. These load factors are especially difficult to estimate because of mechanical vibrations and impacts. Therefore, the load on a linear guideway should be divided by the empircal factor.

Table 1-2 Load factor

Loading Condition	Service Speed	f _w
No impacts & vibration	V ≦ 15 m/min	1 ~ 1.2
Small impacts	15 m/min < V ≤ 60 m/min	1.2 ~ 1.5
Normal load	60m/min < V ≤ 120 m/min	1.5 ~ 2.0
With impacts & vibration	V >120 m/min	2.0 ~ 3.5

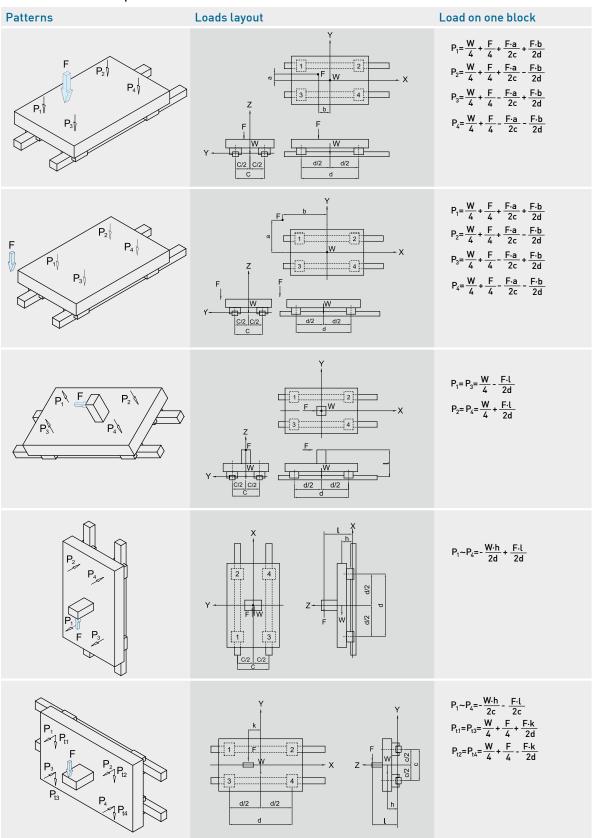
1-4-5 Calculation of Service Life (Lh)

Transform the nominal life into the service life time by using speed and frequency.

Ball type:
$$L_h = \frac{L \cdot 10^{-3}}{V_e \cdot 60} = \frac{\left(\frac{C}{P}\right)^3 \cdot 50 \cdot 10^{-3}}{V_e \cdot 60} \text{ hr}$$
 Eq.1.6

Roller type:
$$L_h = \frac{L \cdot 10^{-3}}{V_e \cdot 60} = \frac{\left(\frac{C}{P}\right)^{\frac{10}{3}} 100 \cdot 10^3}{V_e \cdot 60} \text{ hr}$$
 Eq.1.7

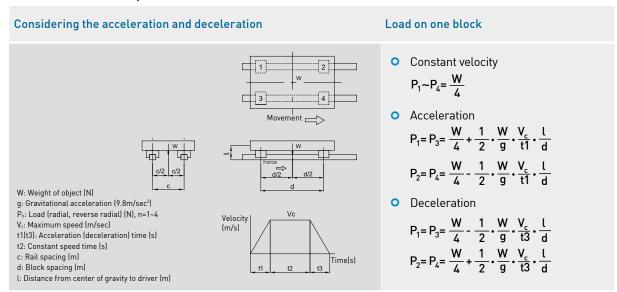
Lh : Service life (hr)
L : Nominal life (km)
Ve : Speed (m/min)
C/P : Load factor


1-5 Applied Loads

1-5-1 Calculation of Load

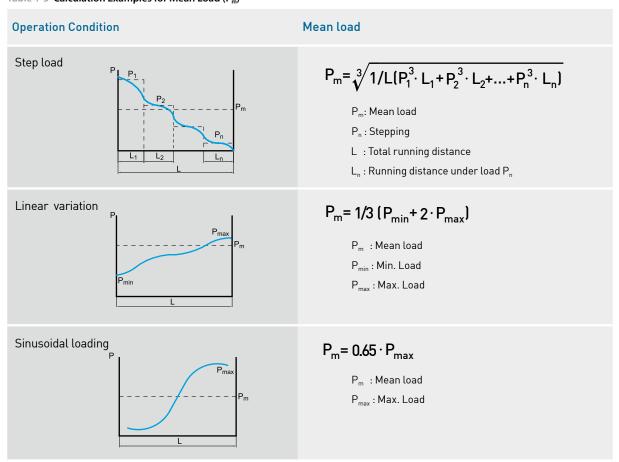
Several factors affect the calculation of loads acting on a linear guideway (such as the position of the object's center of gravity, the thrust position, and the inertial forces at the time of start and stop). To obtain the correct load value, each load condition should be carefully considered.

(1) Load on one block


Table 1-3 Calculation example of loads on block

W: Applied weight l: Distance from external force to driver c: Rail spacing P_n: Load (radial, reverse radial), n=1~4 F: External force d: Block spacing a,b,k: Distance from external force to geometric center Pm: Load (lateral), n=1-4 h: Distance from center of gravity to driver

(2) Loads with inertia forces


Table 1-4 Calculation Examples for Loads with Inertia Forces

1-5-2 Calculation of The Mean Load for Variable Loading

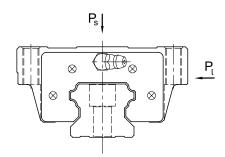

When the load on a linear guideway fluctuates greatly, the variable load condition must be considered in the life calculation. The definition of the mean load is the load equal to the bearing fatigue load under the variable loading conditions. It can be calculated by using table 1-5.

Table 1-5 Calculation Examples for Mean Load (P_m)

1-5-3 Calculation for Bidirectional Equivalent Loads

HIWIN linear guideways can accept loads in several directions simultaneously. To calculate the service life of the guideway when the loads appear in multiple directions, calculate the equivalent load ($P_{\rm e}$) by using the equations below.

HG/EG/WE/QH/QE/QW/RG/QR/CG/CRG/AG Series

$$P_{e} = P_{s} + P_{l}$$
 Eq.1.8

MG Series

when
$$P_s > P_l$$
 $P_e = P_s + 0.5 \cdot P_l$ Eq.1.9

when
$$P_1 > P_s$$
 $P_e = P_1 + 0.5 \cdot P_s$ Eq.1.10

1-5-4 Calculation Example for Service Life

A suitable linear guideway should be selected based on the acting load. The service life is calculated from the ratio of the working load and the basic dynamic load rating.

Table 1-6 Calculation Example for Service Life

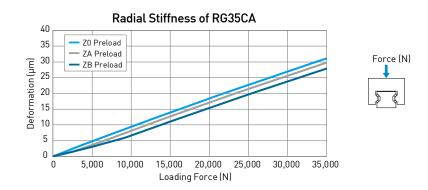
able 1-6 Calculation Example for Servi	ce Life	
Type of Linear Guideway	Dimension of device	Operating condition
Type: HGH 30 CA C: 38.74 kN C ₀ : 52.19 kN	d : 600 mm c : 400 mm h : 200 mm	Weight (W) : 15 kN Acting force (F) : 1 kN Temperature: normal temperature
Preload: Z0	l : 250 mm	Load status: normal load
P ₂ P ₃	2 4 w 3	Force Z/p P
	Calculation of acting to $P_1 \sim P_4 = + \frac{W \times h}{2d} - \frac{F \times l}{2d} = 0$ $P_{max} = P_1 \sim P_4 = 2.29(k)$	$+\frac{15\times200}{2\times600} - \frac{1\times250}{2\times600} = 2.29(kN)$
	 Because preload is Z0 Note: The larger preload (but decrease the nominal 	ZA, AB) will increase the rigidity,
	Calculation for life L $L = \left(\frac{f_h \times f_t \times C}{f_w \times P_c}\right)^3 \times 50 = \left(\frac{1 \times f_w}{f_w}\right)^3 \times 50 = \left(\frac$	$\left(\frac{1\times38.74}{2\times2.29}\right)^3\times50 = 30,258 \text{ (km)}$

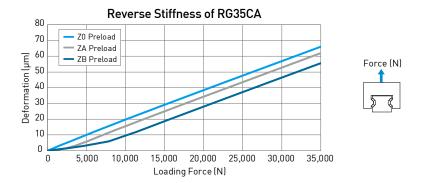
1-6 Friction

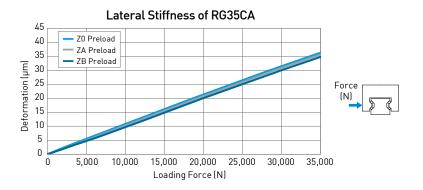
As mentioned in the preface, a linear guideway allows a type of rolling motion, which is achieved by using balls or rollers. The coefficient of friction for a linear guideway can be as little as 1/50 of a traditional slide. Generally, the coefficient of friction of ball type linear guideway is about 0.004 and roller type is about 0.003.

When a load is 10% or less than the basic static load rate, the most of the resistance comes from the grease viscosity and frictional resistance between balls. In contrast, if the load is more than the basic static load rating, the resistance will mainly come from the load.

F = μ•W+S Eq.1.11


 $\begin{array}{ll} F : Friction \, (kN) & \mu : Coefficient \, of \, friction \\ S : Friction \, resistance \, (kN) & W : Normal \, loads \, (kN) \end{array}$


1-7 Preload and Stiffness


With linear guideways, the block can be preloaded to increase stiffness and the internal preload must be considered in the life calculation. Preload is classified by three classes; Z0, ZA, ZB. Each preload level has a different deformation of the block, higher stiffness presents lower deformation. Stiffness in three axis are used by most applications. The definition of stiffness examples shown below:

$$k = \frac{P}{\delta}$$

δ : Deformation (μm) P : Applied load (N) k : Stiffness (N/μm)

1-8 Lubrication

Supplying insufficient lubrication to the guideway will greatly reduce the service life due to an increase in rolling friction. The lubricant provides the following functions;

- Reduces the rolling friction between the contact surfaces to avoid abrasion and surface burning of the guideway.
- Generates a lubricant film between the rolling surfaces and decreases fatigue.
- Anti-corrosion.

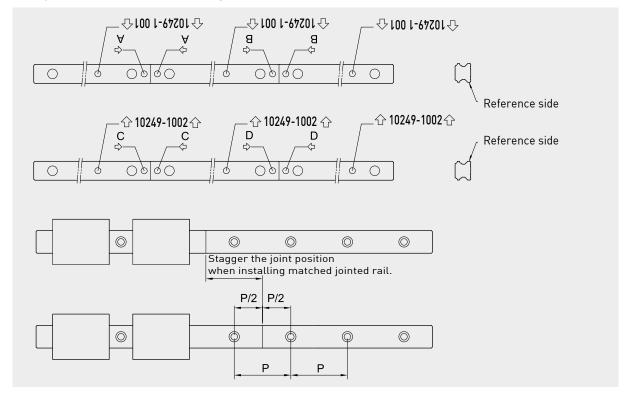
1-8-1 Grease

Linear guideway must be lubricated with the lithium soap based grease before installation. After the linear guideway is installed, we recommend that the guideway be re-lubricated every 100 km. It is possible to carry out the lubrication through the grease nipple. Generally, grease is applied for speeds that do not exceed 60 m/min faster speeds will require high-viscosity oil as a lubricant.

$$T = \frac{100 \cdot 1000}{V_0 \cdot 60} \, hr$$
 Eq.1.12

T: Feeding frequency of oil (hour)

Ve: speed (m/min)

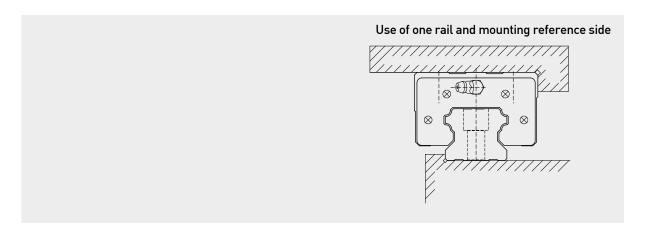

1-8-2 Oil

The recommended viscosity of oil is about 30~150cSt. The standard grease nipple may be replaced by an oil piping joint for oil lubrication. Since oil evaporates quicker than grease, the recommended oil feed rate is approximate 0.3cm³/hr.

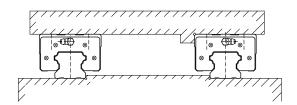
1-9 The Butt-joint Rail

Jointed rail should be installed by following the arrow sign and ordinal number which is marked on the surface of each rail.

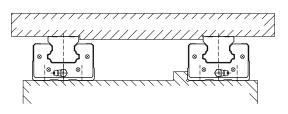
For matched pair, jointed rails, the jointed positions should be staggered. This will avoid accuracy problems due to discrepancies between the 2 rails (see figure).

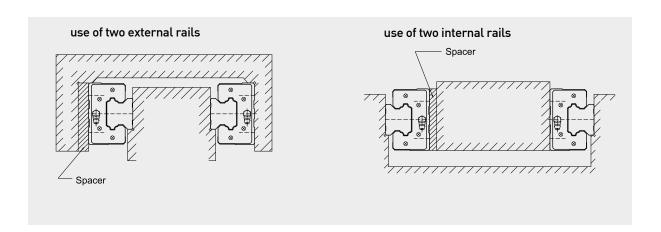


1-10 Mounting Configurations

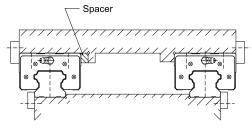

Linear guideways have equal load ratings in the radial, reverse radial and lateral directions.

The application depends on the machine requirements and load directions.

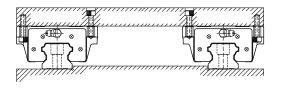

Typical layouts for linear guideways are shown below:



use of two rails(block movement)

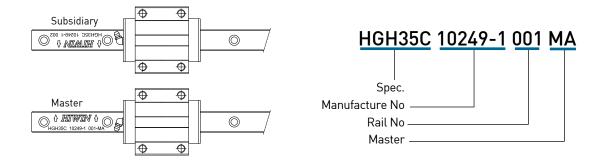


use of two rails(block fixed)

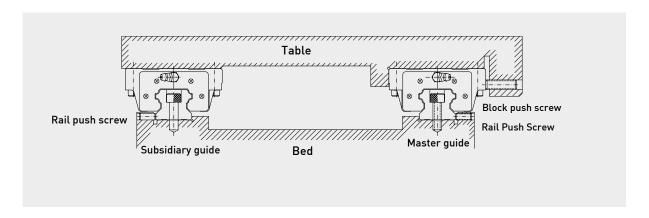


total surface fixed installation

HGW type block with mounting holes in different directions.

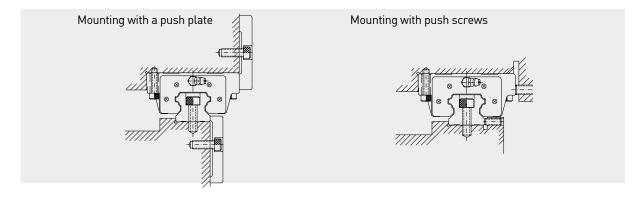


1-11 Mounting Procedures

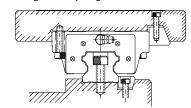

Three installation methods are recommended based on the required running accuracy and the degree of impacts and vibrations.

1-11-1 Master and Subsidiary Guide

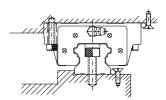
For non-interchangeable type Linear Guideways, there are some differences between the master guide and subsidiary guide. The accuracy of the master guide's datum plane is better than the subsidiary's and it can be a reference side for installation. There is a mark "MA" printed on the rail, as shown in the figure below.



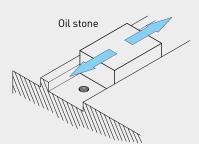
1-11-2 Installation to Achieve High Accuracy and Rigidity



(1) Mounting methods


It is possible that the rails and the blocks will be displaced when the machine is subjected to vibrations and impacts. To eliminate these difficulties and achieve high running accuracy, the following four methods are recommended for fixing.

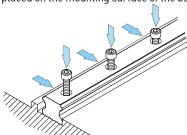
Mounting with taper gib



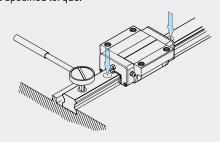
Mounting with needle roller



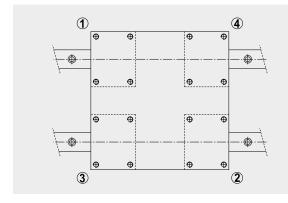
(2) Procedure of rail installation


1 Before starting, remove all dirt from the mounting surface of the machine.

2 Place the linear guideway gently on the bed. Bring the guideway into close contact with the datum plane of the bed.

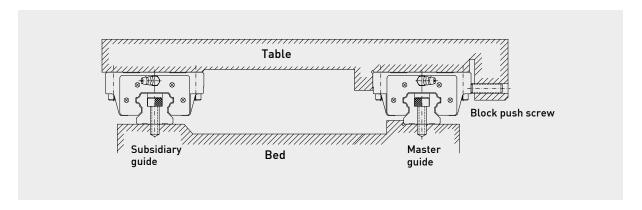

3 Check for correct thread engagement when inserting a bolt into the mounting hole while the rail is being placed on the mounting surface of the bed.

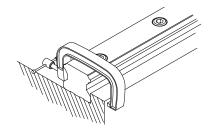
4 Tighten the push screws sequentially to ensure close contact between the rail and the side datum plane.



5 Tighten the mounting bolts with a torque wrench to the specified torque.

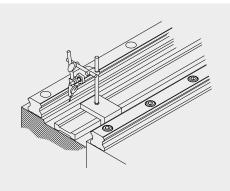
6 Install the remaining linear guideway in the same way.


(3) Procedure of block installation

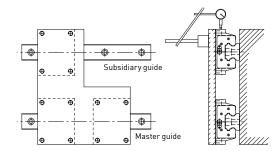

- Place the table gently on the blocks. Next, handtighten the block mounting bolts temporarily.
- Push the blocks against the datum plane of the table and position the table by tightening the push screws.
- The table can be fixed uniformly by tightening the mounting bolts on master guide side and subsidiary side in 1 to 4 sequences.

1-11-3 Installation of the Master Guide without Push Screws

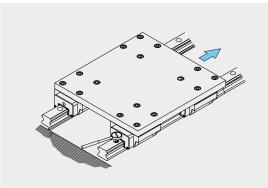
To ensure parallelism between the subsidiary guide and the master guide without push screws, the following rail installation methods are recommended. The block installation is the same as mentioned previously.


(1) Installation of the rail on the subsidiary guide side

Using a vice

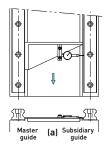

Place the rail into the mounting plane of the bed. Tighten the mounting bolts temporarily; then use a vice to push the rail against the side datum plane of the bed. Tighten the mounting bolts in sequence to the specified torque.

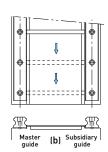
(2) Installation of the rail on the subsidiary guide side


Method with use of a straight edge

Set a straight edge between the rails parallel to the side datum plane of the rail on the master guide side by using a dial gauge. Use the dial gauge to obtain the straight alignment of the rail on the subsidiary guide side. When the rail on the subsidiary guide side is parallel to the master side, tighten the mounting bolts in sequence from one end of the rail to the other.

Method with use of a table

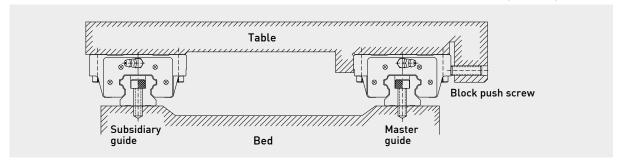

Fix two blocks on the master guide side to the table. Temporarily fix the rail and one block on the subsidiary guide side to the bed and the table. Fix a dial gauge stand on the table surface and bring it into contact with the side of the block on the subsidiary guide side. Move the table from one end of the rail to the other. While aligning the rail on the subsidiary side parallel to the rail on the master guide side, tighten the bolts in sequence.



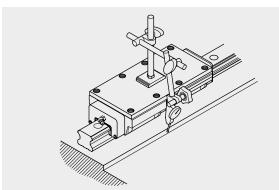
Method following the master guide side

When a rail on the master guide side is correctly tightened, fix both blocks on the master guide side and one of the two blocks on the subsidiary guide side completely to the table.

When moving the table from one end of the rail, tighten the mounting bolts on the subsidiary guide side completely.

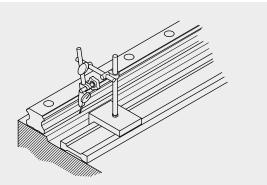


Method with use of a jig


Use a special jig to ensure the rail position on the subsidiary guide side. Tighten the mounting bolts to the specified torque in sequence.

1-11-4 Installation Without Side Surface

To ensure parallelism between the subsidiary guide and the master guide when there is no side surface, the following rail installation method is recommended. The installation of the blocks is the same as mentioned previously.

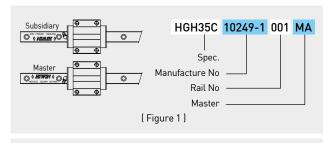


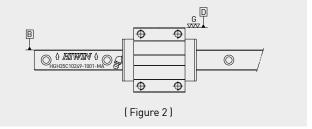
(1) Installation of the rail on the master guide side

Using a provisional datum plane

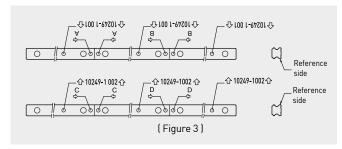
Two blocks are fixed in close contact by the measuring plate. A datum plane provided on the bed is used for straight alignment of the rail from one end to the other. Move the blocks and tighten the mounting bolts to the specified torque in sequence.

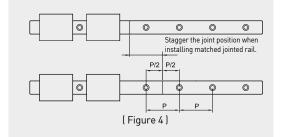
Method with use of a straight edge

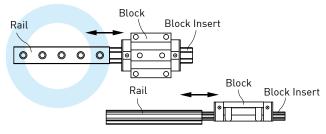

Use a dial gauge and a straight edge to confirm the straightness of the side datum plane of the rail from one end to the other. Make sure the mounting bolts are tightened securely in sequence.


(2) Installation of the rail on the subsidiary guide side

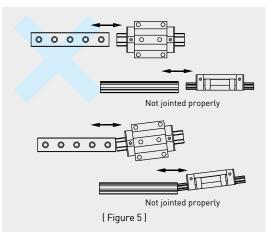
The method of installation for the rail on the subsidiary guide side is the same as the case without push screws.


1-11-5 Linear Guideway Mounting Notifications

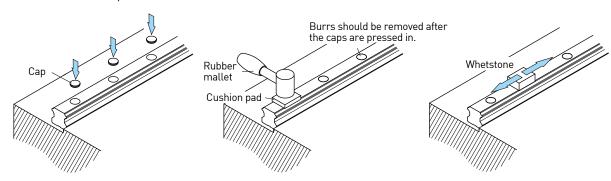

- 1. HIWIN guideways are applied with rust-proof oil before shipping. Please clean the oil before moving or running the blocks.
- 2. Recognition of master and subsidiary rails: For non-interchangeable type linear guideways, there are some differences between the master rail and subsidiary rail. The accuracy of the master rail's datum plane is better than the subsidiary's and it can be a reference side for installation. There is a mark "MA" printed on the rail. Check for the correct order before starting the installation. The rail number of master is an odd number and the rail number of subsidiary is an even number. Please install the rails according to the indication and carry on the installation according to the order for multirails installment (e.g.: 001 pairs 002; 003 pairs 004 etc.)
- 3. Recognition of datum plane: The datum plane (B) of rail is the side indicated by the arrow, which is marked on the top surface of the rail. The datum plane of block is smooth ground surface which shows as D in Figure 2.



4. Butt-joint rail: Butt-joint rail should be installed by following the arrow sign and ordinal number which is marked on the surface of each rail as shown in the figure 3. To avoid accuracy problems due to discrepancies between the 2 rails such as for matched pair, butt-joint rails, the jointed positions should be staggered as shown in figure 4.



5. Do not remove blocks from rails when assembling the guideways. HIWIN recommends using block inserts (please see Figure 5) if it is necessary to remove/ mount block from/ onto rail.



- 6. HIWIN recommends not randomly mixing block units and rails for non interchangeable type to avoid any installation problem.
- 7. To ensure the straightness of rail, please tighten the mounting bolts sequentially with a torque wrench to the specified torque. (Refer to HIWIN Technical Information).

1-11-6 Linear Guideway Usage Instructions

To ensure a long lifetime and running accuracy of the linear guideways after assembly, it is recommended to cover the rail roles with caps.

- 1. Put the caps into the bolt hole.
- Use the cushion pad and rubber mallet to flush the caps and make it even with the bolt holes.
- When the caps are fitted into the bolt holes, please smoothen the top surface of the cpas and make sure no burs remained and not higher than the rail.

1-11-7 Linear Guideway Usage Instructions

- 1. Lubricate the blocks after assembling the quideways in machines. Use a lithium soap-base grease or oil.
- 2. The guideways are packaged with anti-corrosion oil before delivery. If the rails were cleaned before installation, remember to lubricate the rails after assembling the guideways in machine. (Please confirm the compatibility between lubricant & anti rust rail)
- 3. The blocks are composed of various plastic parts, please avoid prolonged exposure of these parts with any organic solvent when cleaning the blocks to prevent possible damage.
- 4. Try to avoid any foreign objects from getting into the block as this could result in damage to the product.
- 5. Please do not disassemble the parts, the incautious actions of disassembly may bring foreign objects into the block and diminish the precision of the guideways or cause possible damage.
- 6. When handling the guideways please hold them horizontally. Improper handling can cause the blocks to fall off the rail.
- 7. Please avoid the inappropriate falling or clash on the blocks, which will damage the function of guideways.
- 8. For special application conditions, please apply the appropriate surface treatment or refer to the Linear Guideway Technical Information catalog for more detailed instructions.
- 9. The operating temperature range of the E2 type (Self lubricant kit) is -10°C~ 50°C. For Q1 types (Quiet linear guideway), the range is -10°C~80°C. The maximum service temperature of the SE type (Metallic end cap) is 150°C and for other standard types it is 100°C.
- 10. Please refer to the Linear Guideway Technical Information catalog for more detailed instructions. Please do not hesitate to contact HIWIN if there are further questions related to the application.

Note: For Q1 type guideways (QH & QE), please pay attention to the following instructions:

- When assembling and disassembling the Q1 blocks, please use the block insert that is provided. (one block insert is equipped per block).
- 2. Special accessories are used in the Q1 type guideways, any adjustment on the preload is prohibited.
- 3. For some of our Q1 type Linear Guideways, the boreholes for fixing the slider on the block are connected with recirculation channels. Therefore please pay attention to the length of screws, to avoid the screw with longer length might interfere the recirculation parts and influence the operating performance.

Specification	Max. length of screws M x L (mm)	
QHH20	M5 x 6	
QHH25	M6 x 8	-
QHH30	M8 x 10	
QHH35	M8 x 12	××××××××××××××××××××××××××××××××××××××
QEH20	M5 x 7	<u> </u>
QEH25	M6 x 9	Ψ
QEH30	M8 x 10	
QWH27	M6 x 6	
QWH35	M8 x 8	

2. HIWIN Linear Guideway Product Series

In an effort to meet customer's requirement and service needs HIWIN offers several different types of guides. We supply the HG series which is suitable for CNC machineries, the EG series for automation industries, the WE series for single axis equipment, the RG series for high rigidity applications, and the miniature series, MGN/MGW, for medical devices and semiconductor equipment. Also for high technology industries, HIWIN has developed the QH and QE series with high speed and quiet characteristics.

(1) Types & series

Table 2-1 Types & Series

ubic 2 i Type	J & Jenes					
Series	Assembly Height	Load	Square Tap hole	Flange	B 311 11 1	0 1: 1:
	пеідііі			Tap hole	Drilled hole	Combination
	High	Heavy Load	HGH-CA	-	-	-
HG			HGH-HA	-	-	-
	Low	Heavy Load	HGL-CA	HGW-CA	HGW-CB	HGW-CC
		Super Heavy Load		HGW-HA	HGW-HB	HGW-HC
EG	Low	Medium Load	EGH -SA	EGW-SA	EGW-SB	-
		Heavy Load	EGH -CA	EGW-CA	EGW-CB	-
WE	Low	Heavy Load	WEH-CA	-	-	WEW-CC
MGN	_	Standard	MGN-C	-	-	-
		Long	MGN-H	-	-	-
MGW	_	Standard	MGW-C	-	-	-
		Long	MGW-H	-	-	-
MGN-0		Standard	MGN-C-0	-	-	-
.1014 0		Long	MGN-H-0	-	-	-
MGW-0		Standard	MGW-C-0	-	-	-
VIO VV-U	-	Long	MGW-H-0	-	-	-
	High	Heavy Load	QHH-CA	-	-	-
211	High	Super Heavy Load	QHH-HA	-	-	-
Н	1	Heavy Load	-	QHW-CA	QHW-CB	QHW-CC
	Low	Super Heavy Load	-	QHW-HA	QHW-HB	QHW-HC
`-	1	Medium Load	QEH -SA	QEW-SA	QEW-SB	-
QΕ	Low	Heavy Load	QEH -CA	QEW-CA	QEW-CB	-
QW	Low	Heavy Load	QWH-CA	-	-	QWW-CC
		Heavy Load	CGH-CA	-	-	-
	High	Super Heavy Load	CGH-HA	-	-	-
CG		Heavy Load	CGL-CA	-	-	CGW-CC CGW-CA ^[1]
	Low	Super Heavy Load	CGL-HA	-	-	CGW-HC CGW-HA ^[1]
	Himb	Heavy Load	RGH-CA	-	-	-
	High	Super Heavy Load	RGH-HA	-	-	-
20	Lavo	Heavy Load	RGL-CA	-	-	RGW-CC
RG	Low	Super Heavy Load	RGL-HA	-	-	RGW-HC
	1.114	Heavy Load	RGS-CA	-	-	RGF-CC
	Ultra low	Super Heavy Load	RGS-HA	-	-	RGF-HC
	11:	Heavy Load	QRH-CA	-	-	-
an.	High	Super Heavy Load	QRH-HA	-	-	-
QR		Heavy Load	QRL-CA	-	-	QRW-CC
	Low	Super Heavy Load	QRL-HA	-	-	QRW-HC
		Heavy Load	CRGH-CA	-	-	-
	High		CRGH-HA	-	-	-
CRG		Heavy Load	CRGL-CA	-	-	CRGW-CC
	Low	Super Heavy Load		-	-	CRGW-HC
	-	Heavy Load	AG-C	-	-	-
AG	-	Super Heavy Load		-	-	-
		Super ricury Load				

(2) Accuracy classes

Table 2-2 Accuracy Classes

	Assembly Type					Interchangeable Type		
Series	Normal	High	Precision	Super Precision	Ultra Precision	Normal	High	Precision
	(C)	(H)	(P)	(SP)	(UP)	(C)	(H)	(P)
HG	•	•	•	•	•	•	•	•
EG	•	•	•	•	•	•	•	•
WE	•	•	•	•	•	•	•	•
MGN	•	•	•	-	-	•	•	•
MGW	•	•	•	-	-	•	•	•
MGN-0	•	•	•	-	-	•	•	•
MGW-0	•	•	•	-	-	•	•	•
QH	•	•	•	•	•	•	•	•
QE	•	•	•	•	•	•	•	•
QW	•	•	•	•	•	•	•	•
CG	•	•	•	•	•	•	•	•
RG	-	•	•	•	•	-	•	•
QR	-	•	•	•	•	-	•	•
CRG	-	•	•	•	•	-	•	•
AG	-	-	•	-	-	-	-	-

(3) Classification of preload

Table 2-3 Preload

	Non-interchange	able Type	Interchangeable	Interchangeable Type			
Series	Light preload (Z0)	Medium Preload	Heavy Preload (ZB)	Light Preload (Z0)	Medium Preload (ZA)		
HG	•	•	•	•	•		
EG	•	•	•	•	•		
WE	•	•	•	•	•		
QH	•	•	•	•	•		
QE	•	•	•	•	•		
QW	•	•	•	•	•		
CG	•	•	•	•	•		
AG	•	•	•	-	-		

	Non-interchangeab	le Type	Interchangeable Type		
Series	Very Light Preload	Medium Preload	Heavy Preloa	Very Light Preload (Z0)	Light Preload
RG	•	•	•	•	•
QR	•	•	•	•	•
CRG	•	•	•	•	•

	Non-interchangeable Type			Interchangeable Type		
Series	Light Clearance (ZF)	Very Ligh Preload (Z0)	Light Preload (Z1)	Light Clearance (ZF)	Very Ligh Preload (Z0)	Light Preload (Z1)
MGN	•	•	•	•	•	•
MGW	•	•	•	•	•	•
MGN-0	•	•	•	•	•	•
MGW-0	•	•	•	•	•	•

(4) Recommended accuracy grade for machine applications

Application Grade		AXIS		Ac	curacy Grad	de	
	Application Grade	AXIS	С	Н	Р	SP	UP
	Lathes	Χ			•	•	•
	Latties	Z			•	•	
	Milling Machines Boring Machines	Χ				•	•
		Υ			•	•	
		Z			•	•	
		X			•	•	•
	Machine Center	Y			•	•	•
		Z			•	•	
	lia Danana	X Y					•
ပ္ခ	Jig Borers	Z					•
CNC Machinery Tools		X					•
ery	Drilling Machines	Y			•		
.hi	Dritting Machines	Z		•	•		
Σ		X				•	•
NC NC	Grinders	Y			•	•	
O		X			•	•	
	EDM	Y			•	•	
		Z			•		
	Wire Cut EDM	Χ				•	
		Υ				•	
		U			•	•	
		٧			•	•	
	Laser Cutting Machine	Х			•		
		Υ			•		
		Z			•		
	Punching Press	Χ		•	•		
	r uncling r ress	Υ		•	•		
	Single Purpose Machines			•	•	•	
	Wood Working Machines		•	•			
	Industrial Robot (Precision)				•	•	
	Industrial Robot (General)		•	•	•		
	Coordinate Measuring Machine					•	•
ery	Non-CNC Machine				•		
ri Li	Transport Equipment		•	•	•		
Σ	X-Y Table				•	•	•
eral	Linear Actuator		•	•	•		
General Machinery	Aircraft Landing Gear			•	•		
9	Airfoil Control			•	•		
	Gate Valve		•				
	Power Steering Glass Grinder			•			
					•	•	
	Surface Grinder		•	•	•		
	Induction Hardening Machine Electromachine		•		•	•	
	All-electric Injection Molding Machine		•	•	•		
	Alt-electric injection Molding Machine						

HG Series

Heavy Load Ball Type

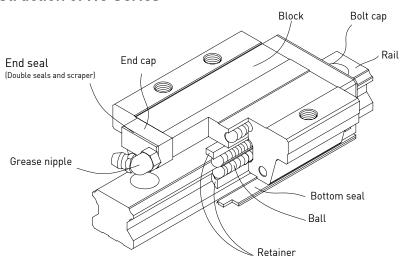
2-1 HG Series - Heavy Load Ball Type Linear Guideway

HG series linear guideways are designed with load capacity and rigidity higher than other similar products with circular-arc groove and structure optimization. It features equal load ratings in the radial, reverse radial and lateral directions, and self-aligning to absorb installation-error. Thus, HIWIN HG series linear guideways can achieve a long life with high speed, high accuracy and smooth linear motion.

2-1-1 Features of HG Series

(1) Self-aligning capability

By design, the circular-arc groove has contact points at 45 degrees. HG series can absorb most installation errors due to surface irregularities and provide smooth linear motion through the elastic deformation of rolling elements and the shift of contact points. Self-aligning capability, high accuracy and smooth operation can be obtained with an easy installation.

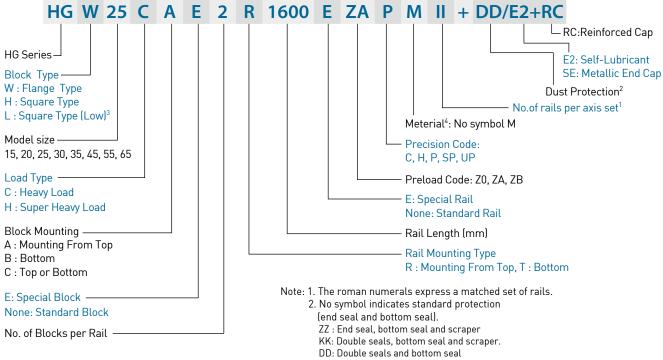

(2) Interchangeability

Because of precision dimensional control, the dimensional tolerance of HG series can be kept in a reasonable range, which means that any blocks and any rails in a specific series can be used together while maintaining dimensional tolerance. And a retainer is added to prevent the balls from falling out when the blocks are removed from the rail.

(3) High rigidity in all four directions

Because of the four-row design, the HG series linear guideway has equal load ratings in the radial, reverse radial and lateral directions. Furthermore, the circular-arc groove provides a wide-contact width between the balls and the groove raceway allowing large permissible loads and high rigidity.

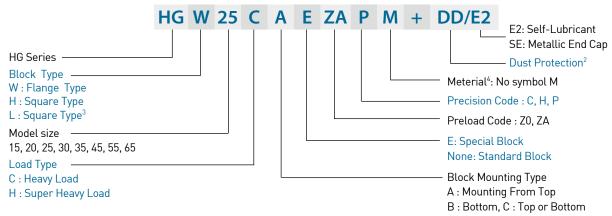
2-1-2 Construction of HG Series

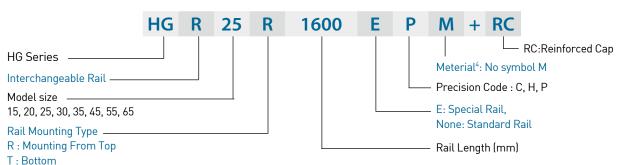


- Rolling circulation system: Block, Rail, End Cap and Retainer
- Lubrication system: Grease Nipple and Piping Joint
- Dust protection system: End seal, Bottom Seal, Bolt Cap, Double Seals and Scraper

2-1-3 Model Number of HG Series

HG series guideways can be classified into non-interchangeable and interchangeable types. The sizes are identical. The only difference between the two types is that the interchangeable type of blocks and rails can be freely exchanged, and their accuracy can reach up to P class. The model number of HG series contains the size, type, accuracy class, preload class, etc..


(1) Non-interchangeable type


- 3. Block type HGL is the low profile design of HGH (square type), the assembled height is same as HGW (flange type) in same size.
- 4. No symbol: Carbon Steel / M: Stainless Steel
- 5. The stainless steel is available for HG15C ${\bf \cdot}$ HG20C ${\bf \cdot}$ HG25C.

(2) Interchangeable type

Model Number of HG Block

Model Number of HG Rail

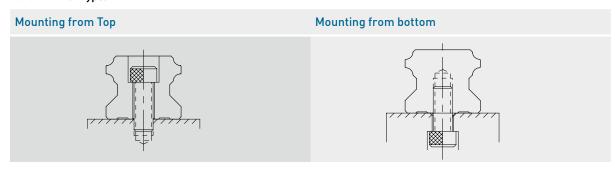
HG Series

Heavy Load Ball Type

2-1-4 Types

(1) Block types

There're two types of blocks:flange and square. The flange type is suitable for heavy moment load application because of the lower assembly height and wider mounting surface.


Table 2-1-1 Block Types

Туре	Model	Shape	Height	Rail Length (mm)	Main Application
υ	HGH-CA HGH-HA		28 ↓ 90	100 ↓ 4000	 Machine Centers NC Lathes Grinding Machines Precision Machining Machines Heavy Cutting Machines
Square	HGL-CA HGL-HA		24 ↓ 70	100 ↓ 4000	 Automation Devices Transportation Equipment Measuring Equipment Devices Requiring High Positional Accuracy
	HGW-CA HGW-HA		24 ↓ 90	100 ↓ 4000	
Flange	HGW-CB HGW-HB		24 ↓ 90	100 ↓ 4000	
	HGW-CC HGW-HC		24 ↓ 90	100 ↓ 4000	

(2) Rail types

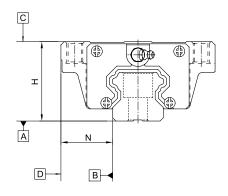

Besides the standard top mounting type, the bottom mounting type is also available.

Table 2-1-2 Rail Types

2-1-5 Accuracy Classes

The accuracy of HG series can be classified into normal (C), high (H), precision (P), super precision (SP), ultra precision (UP), five classes. Please choose the class by referring the accuracy of applied equipment.

(1) Accuracy of non-interchangeable guideways

Table 2-1-3 Accuracy Standards

Unit: mm

Item	HG - 15, 20				
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Dimensional tolerance of width N	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Variation of height H	0.02	0.01	0.006	0.004	0.003
Variation of width N	0.02	0.01	0.006	0.004	0.003
Running parallelism of block surface C to surface A	A See Table 2-1-11				
Running parallelism of block surface D to surface B			See Table 2-1-	11	

Table 2-1-4 Accuracy Standards

Unit: mm

Item	HG - 25, 30, 35					
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)	
Dimensional tolerance of height H	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01	
Dimensional tolerance of width N	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01	
Variation of height H	0.02	0.015	0.007	0.005	0.003	
Variation of width N	0.03	0.015	0.007	0.005	0.003	
Running parallelism of block surface C to surface A	A See Table 2-1-11					
Running parallelism of block surface D to surface B $$			See Table 2-1-	11		

HG Series

Heavy Load Ball Type

Table 2-1-5 Accuracy Standards					Unit: mm
Item	HG - 45, 55				
Accuracy Classes	Normal (C)	High (н)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Dimensional tolerance of width N	± 0.1	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Variation of height H	0.03	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.02	0.01	0.007	0.005
Running parallelism of block surface C to surface A	e A See Table 2-1-11				
Running parallelism of block surface D to surface B		See Table 2-1-	Table 2-1-11		
Table 2-1-6 Accuracy Standards					Unit: mm
Item	HG - 65				
Accuracy Classes	Normal	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.07	0 - 0.07	0 - 0.05	0 - 0.03
Dimensional tolerance of width N	± 0.1	± 0.07	0 - 0.07	0 - 0.05	0 - 0.03
Variation of height H	0.03	0.02	0.01	0.007	0.005
Variation of height H Variation of width N	0.03 0.03	0.02 0.025	0.01 0.015	0.007	0.005 0.007
				0.01	

(2) Accuracy of interchangeable guideways

Table 2-1-7 Accuracy Standards					
Item	HG - 15, 20				
Accuracy Classes	Normal (C)	High (H)	Precision (P)		
Dimensional tolerance of height H	± 0.1	± 0.03	± 0.015		
Dimensional tolerance of width N	± 0.1	± 0.03	± 0.015		
Variation of height H	0.02	0.01	0.006		
Variation of width N	0.02	0.01	0.006		
Running parallelism of block surface C to surface A	e A See Table 2-1-11				
Running parallelism of block surface D to surface B	B See Table 2-1-11				
				11.5	

Running parallelism of block surface D to surface B	B See Table 2-1-11				
Table 2-1-8 Accuracy Standards				Unit: mm	
Item	HG - 25, 30, 35				
Accuracy Classes	Normal (C)	High (н)	Precision (P)		
Dimensional tolerance of height H	± 0.1	± 0.04	± 0.02		
Dimensional tolerance of width N	± 0.1	± 0.04	± 0.02		
Variation of height H	0.02	0.015	0.007		
Variation of width N	0.03	0.015	0.007		
Running parallelism of block surface C to surface A		See Table 2-1-11			
Running parallelism of block surface D to surface B		See Table 2-1-11			

Table 2-1-9 Accuracy Standards

Unit: mm

Item	HG - 45, 55			
Accuracy Classes	Normal (C)	High (H)	Precision (P)	
Dimensional tolerance of height H	± 0.1	± 0.05	± 0.025	
Dimensional tolerance of width N	± 0.1	± 0.05	± 0.025	
Variation of height H	0.03	0.015	0.007	
Variation of width N	0.03	0.02	0.01	
Running parallelism of block surface C to surface A	A See Table 2-1-11			
Running parallelism of block surface D to surface B	See Table 2-1-11			

Table 2-1-10 Accuracy Standards

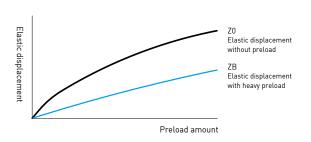
Unit: mm

Item	HG - 65			
Accuracy Classes	Normal (C)	High (H)	Precision (P)	
Dimensional tolerance of height H	± 0.1	± 0.07	± 0.035	
Dimensional tolerance of width N	± 0.1	± 0.07	± 0.035	
Variation of height H	0.03	0.02	0.01	
Variation of width N	0.03	0.025	0.015	
Running parallelism of block surface C to surface A		See Table 2-1-11		
Running parallelism of block surface D to surface B	See Table 2-1-11			

(3) Accuracy of running parallelism

Table 2-1-11 Accuracy of Running Parallelism

Rail Length (mm)	Accuracy (µm)				
,	C	H	P	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7


HG Series

Heavy Load Ball Type

2-1-6 Preload

(1) Definition

A preload can be applied to each guideway. Oversized balls are used. Generally, a linear motion guideway has a negative clearance between groove and balls in order to improve stiffness and maintain high precision. The figure shows the load is multiplied by the preload, the rigidity is doubled and the deflection is reduced by one half. The preload no larger than ZA would be recommended for the model size under HG20 to avoid an over-preload affecting the guideway's life.

(2) Preload classes

HIWIN offers three classes of standard preload for various applications and conditions.

Table 2-1-12 Preload Classes

Class	Code	Preload	Condition	Examples of Application
Light Preload	Z0	0~ 0.02C	Certain load direction, low impact, low precision required	Transportation devices, auto-packing machines, X-Y axis for general industrial machines, welding machines, welders
Medium Preload	ZA	0.05C~0.07C	High precision required	Machining centers, Z axis for general industrial, machines, EDM, NC lathes, Precision X-Y tables, measuring equipment
Heavy Preload	ZB	0.10C~ 0.12C	High rigidity required, with vibration and impact	Machining centers, grinding machines, NC lathes, horizontal and vertical milling machines, Z axis of machine tools, Heavy cutting machines
Class	Interchangeable Guideway		deway	Non-Interchangeable Guideway
Preload classes	Z0, ZA			Z0, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

(3) Stiffness performance

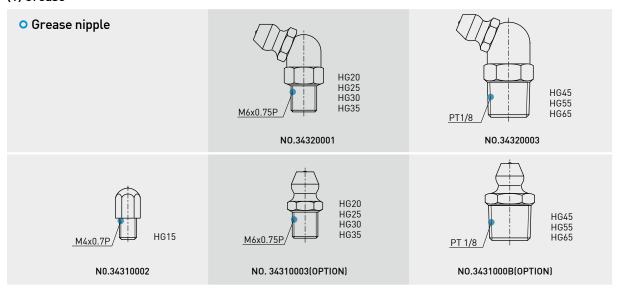

Stiffness depends on preload. The following table shows stiffness value of each size.

Table 2-1-13 Radial stiffness for HG Series

Table 2 1 15 Hadian Statilless for the Series						
Load type	Series / Size	Stiffness (N/µm)				
Loud type	Series/ Size	Z0	ZA	ZB		
	HG 15C	196	365	483		
	HG 20C	232	460	678		
	HG 25C	292	539	705		
Hanneland	HG 30C	354	618	823		
Heavy load	HG 35C	395	642	865		
	HG 45C	505	738	980		
	HG 55C	609	828	1092		
	HG 65C	716	918	1201		
	HG 20H	300	611	824		
	HG 25H	378	715	935		
	HG 30H	453	820	1093		
Super heavy load	HG 35H	509	855	1150		
	HG 45H	649	970	1298		
	HG 55H	789	1085	1445		
	HG 65H	946	1221	1599		

2-1-7 Lubrication

(1) Grease

Mounting location

The standard location of the grease fitting is at either end of the block, but the nipple can be mounted at either side of the block instead. For side installation, contact HIWIN to pre-drill the block at the desired location.

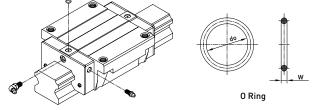
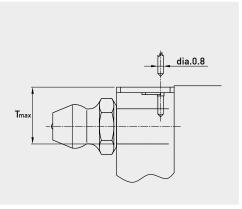



Table 2-1-14 O-Ring size and max. permissible depth for piercing

Size	0-Ring		Lube hole at top: max. permissible depth for piercing
	do (mm)	W (mm)	T _{max} (mm)
HG15	2.5±0.15	1.5±0.15	3.75
HG20	4.5±0.15	1.5±0.15	5.7
HG25	4.5±0.15	1.5±0.15	5.8
HG30	4.5±0.15	1.5±0.15	6.3
HG35	4.5±0.15	1.5±0.15	8.8
HG45	4.5±0.15	1.5±0.15	8.2
HG55	4.5±0.15	1.5±0.15	11.8
HG65	4.5±0.15	1.5±0.15	10.8

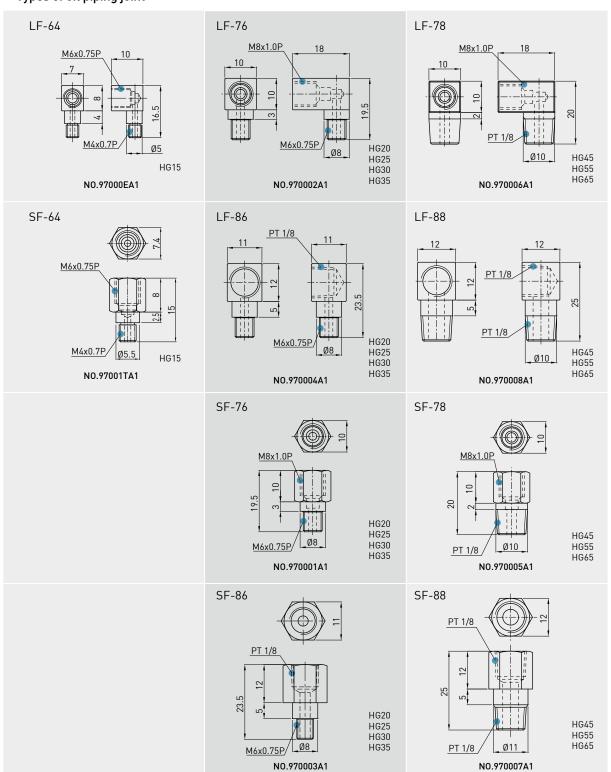
The lubricant amount for a block filled with grease

Table 2-1-15 The lubricant Amount for a Block Filled with Grease

Size	Heavy load (cm³)	Super heavy load (cm³)	Size	Heavy load (cm³)	Super heavy load (cm³)
HG15	1	-	HG35	10	12
HG20	2	3	HG45	17	21
HG25	5	6	HG55	26	33
HG30	7	8	HG65	50	61

• Frequency of replenishment

Check the grease every 100 km, or every 3-6 months.


HG Series

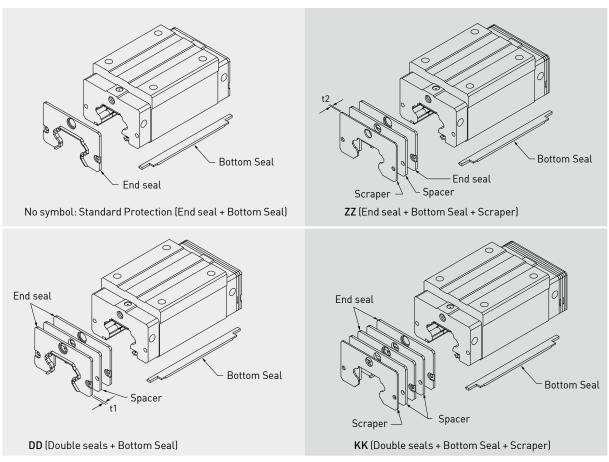
Heavy Load Ball Type

(2) Oil

The recommended viscosity of oil is about 30~150cSt. If customers need to use oil-type lubrication, please inform us.

Types of oil piping joint

Oil refilling rate

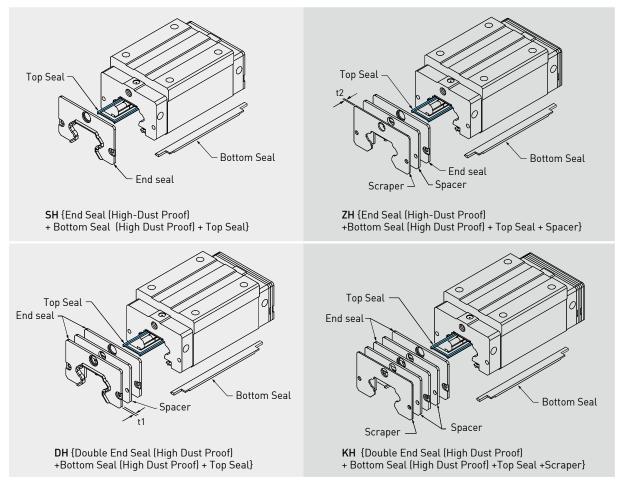

Table 2-1-16

Size	Refilling rate (cm³/hr)	Size	Refilling rate (cm³/hr)
HG15	0.2	HG35	0.3
HG20	0.2	HG45	0.4
HG25	0.3	HG55	0.5
HG30	0.3	HG65	0.6

2-1-8 Dust Proof Accessories

(1) Codes of standard dust proof accessories

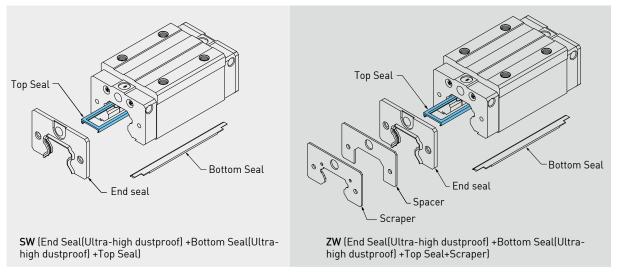
If the following accessories are needed, please add the code followed by the model number.


Note: HG20/25/65 are without spacer.

HG Series

Heavy Load Ball Type

(2) Codes of high-dust proof accessories


HIWIN develops many kinds of dust proof accessories for different application and working environment to avoid dust or debris. If the following accessories are needed, please add the code followed by the model number.

- Note: 1. The available size for high dust proof accessories are HG20(C/H), 25(C/H), 30(C/H), 35(C/H) and 45C.
 - 2. The value of fricton force will increase 0.6~1.2 kgf.
 - 3. HG20/25 are without spacer.
 - 4. If higher dust proof accessories is needed, please contact HIWIN.

(3) Codes of ultra-high dust proof accessories

Hiwin has developed high dust proof accessories which is used for environment that is full of dust and particle, such as wood working machinery and glass/stone machining equipment. These accessories show high performance of dust proof. If accessories are needed, please add the code followed by the model number.

- Note: 1. The available size for high dust proof accessories are HG15C, HG20(C/H), HG25(C/H), HG30(C/H), HG35(C/H), HG45(C/H).
 - 2. The value of fricton force will increase 1.5~4.0 kgf.
 - 3. MGN5 is only supplied with End Seal (Ultra-high dustproof)

(4) Fuction of dust proof accessories

End seal and bottom seal

To prevent life reduction caused by iron chips or dust entering the block.

Double seals

Enhances the wiping effect, foreign matter can be completely wiped off.

Table 2-1-17 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
HG15 ES	3	HG35 ES	3.2
HG20 ES	3.5	HG45 ES	4.5
HG25 ES	3.5	HG55 ES	4.5
HG30 ES	3.2	HG65 ES	6

The scraper removes high-temperature iron chips and larger foreign objects.

Table 2-1-18 Dimensions of scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
HG15 SC	1.5	HG35 SC	1.5
HG20 SC	1.5	HG45 SC	1.5
HG25 SC	1.5	HG55 SC	1.5
HG30 SC	1.5	HG65 SC	1.5

Top Seal

Top seal can efficiently avoid dust from the surface of rail or tapping hole getting inside the block.

HG Series

Heavy Load Ball Type

Bolt caps for rail mounting holes

Caps are used to cover the mounting holes to prevent chips or other foreign objects from collecting in the holes. The caps will be enclosed in each rail package.

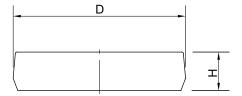


Table 2-1-19 Dimensions of Bolt Caps for Rail Mounting Holes

Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)	Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)
HGR15	M4	7.65	1.1	HGR35	M8	14.20	3.5
HGR20	M5	9.65	2.5	HGR45	M12	20.25	4.5
HGR25	M6	11.15	2.5	HGR55	M14	23.25	5.0
HGR30	M8	14.20	3.5	HGR65	M16	26.35	5.0

(5) Dimensions of block equipped with the parts

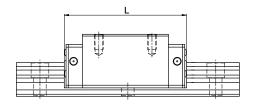


Table 2-1-20 Overall block length

unit: mm

Table 2-1-20 Ove	erali block length					unit: mm
Size	Overall block	length (L)				
Size	SS/SH	ZZ/ZH	DD/DH	KK/KH	SW	ZW
HG15C	61.4 (61.8)	69.0 (69.0)	68.0 (68.4)	75.6 (75.6)	63.2 (63.2)	71.0 (71.0)
*HG20C	77.5 (79.3)	82.5 (84.5)	82.5 (84.3)	87.5 (89.5)	78.5 (78.5)	86.3 (87.7)
*HG20H	92.2 (94.0)	97.2 (99.2)	97.5 (99.0)	102.2 (104.2)	93.2 (93.2)	101.0 (102.4)
*HG25C	84.0 (85.0)	89.0 (91.0)	89.0 (90.0)	94.0 (96.0)	85.0 (85.0)	92.8 (94.8)
*HG25H	104.6 (105.6)	109.6 (111.6)	109.6 (110.6)	114.6 (116.6)	105.6 (105.6)	113.4 (115.4)
*HG30C	97.4 (99.4)	105.4 (107.4)	104.8 (106.8)	112.8 (114.8)	99.0 (100.4)	107.2 (109.2)
*HG30H	120.4 (122.4)	128.4 (130.4)	127.8 (129.8)	135.8 (137.8)	122.0 (123.4)	130.2 (132.2)
*HG35C	112.4 (114.4)	120.4 (122.4)	119.8 (121.8)	127.8 (129.8)	115.2 (116.0)	123.4 (125.4)
*HG35H	138.2 (140.2)	146.2 (148.2)	145.6 (147.6)	153.6 (155.6)	141.0 (141.8)	149.2 (151.2)
*HG45C	139.4 (139.4)	150.0 (150.0)	149.4 (149.4)	160.0 (160.0)	140.0 (140.0)	148.8 (150.2)
HG45H	171.2 (171.2)	181.8 (181.8)	181.2 (181.2)	191.8 (191.8)	171.8 (171.8)	180.6 (182.0)
HG55C	166.7 (166.7)	177.1 (177.1)	177.1 (177.1)	187.5 (187.5)	-	-
HG55H	204.8 (204.8)	215.2 (215.2)	215.2 (215.2)	225.6 (225.6)	-	-
HG65C	200.2 (200.2)	208.2 (208.2)	209.2 (209.2)	217.2 (217.2)	-	-
HG65H	259.6 (259.6)	267.6 (267.6)	268.6 (268.6)	276.6 (276.6)	-	-

 $Note: 1. \ For the \ marking \ of \ "*", it means this specification is available for SH/ZH/DH/KH \ dust proof accessories.$

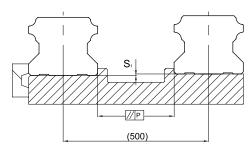
^{2.} The marking of "[$\,\,$]" denotes the maximum block length with screws, lips of end seals, etc.

2-1-9 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-1-21 Seal Resistance

Size	Resistance N (kgf)	Size	Resistance N (kgf)
HG15	2.35 (0.24)	HG35	4.91 (0.5)
HG20	2.75 (0.28)	HG45	3.83 (0.39)
HG25	3.14 (0.32)	HG55	4.61 (0.47)
HG30	3.53 (0.36)	HG65	5.79 (0.59)


Note: 1. 1kgf=9.81N

2-1-10 The Accuracy Tolerance of Mounting Surface

(1) The accuracy tolerance of rail-mounting surface

Because of the circular-arc contact design, the HG linear guideway can compensate for some surface-error on installation and still maintain smooth linear motion.

As long as the accuracy requirements for the mounting surface are followed, high accuracy and rigidity of linear motion of the guideway can be obtained without any difficulty. For fast installation and smooth movement ability of the deviation in mounting surface accuracy.

(2) The parallelism tolerance of reference surface (P)

Table 2-1-22 Max. Parallelism Tolerance (P)

unit: µm

C:	Preload classes		
Size	Z 0	ZA	ZB
HG15	25	18	13
HG20	25	20	18
HG25	30	22	20
HG30	40	30	27
HG35	50	35	30
HG45	60	40	35
HG55	70	50	45
HG65	80	60	55

(3) The accuracy tolerance of reference surface height

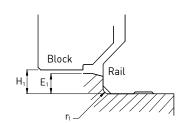
Table 2-1-23 Max. Tolerance of Reference Surface Height (S₁)

unit: µm

	•		
Size	Preload classes		
3126	Z0	ZA	ZB
HG15	130	85	35
HG20	130	85	50
HG25	130	85	70
HG30	170	110	90
HG35	210	150	120
HG45	250	170	140
HG55	300	210	170
HG65	350	250	200

Note : Permissible value is proportional to the axial distance $% \left(1\right) =\left(1\right) \left(1$

^{2.} Please inform HIWIN if low friction request is required.


HG Series

Heavy Load Ball Type

2-1-11 Cautions for Installation

(1) Shoulder heights and fillets

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

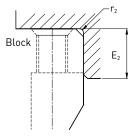
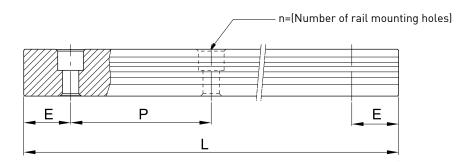


Table 2-1-24 Shoulder Heights and Fillets

Size	Max. radius of fillets	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
HG15	0.5	0.5	3	4	4.3
HG20	0.5	0.5	3.5	5	4.6
HG25	1.0	1	5	5	5.5
HG30	1.0	1	5	5	6
HG35	1.0	1	6	6	7.5
HG45	1.0	1	8	8	9.5
HG55	1.5	1.5	10	10	13
HG65	1.5	1.5	10	10	15

(2) Tightening Torque of Bolts for Installation

Improper tightening of bolts will seriously influence the accuracy of Linear Guideway installation. The following tightening torques for different sizes of bolts are recommended.


Table 2-1-25 Mounting Torque

6:	D. H. J.	Torque N-cm (kgf-cm)		
Size	Bolt size	Iron	Casting	Aluminum
HG15	M4×0.7P×16L	392 (40)	274 (28)	206 (21)
HG20	M5×0.8P×16L	883 (90)	588 (60)	441 (45)
HG25	M6×1P×20L	1373 (140)	921 (94)	686 (70)
HG30	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)
HG35	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)
HG45	M12×1.75P×35L	11772 (1200)	7840 (800)	5880 (600)
HG55	M14×2P×45L	15696 (1600)	10500 (1100)	7840 (800)
HG65	M16×2P×50L	19620 (2000)	13100 (1350)	9800 (1000)

Note:1 kgf=9.81 N

2-1-12 Standard and Maximum Lengths of Rail

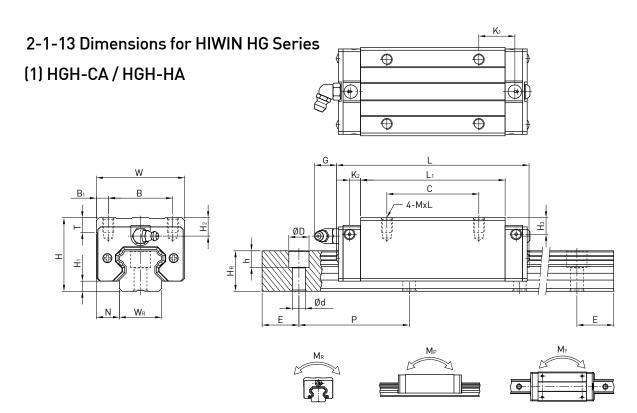
HIWIN offers standard rail lengths for customer needs. For non-standard E-values, the recommended dimension should no greater than 1/2 of the pitch (P) dimension. This will prevent an unstable rail end.

$$L = (n-1) \times P + 2 \times E$$
 Eq. 2.1

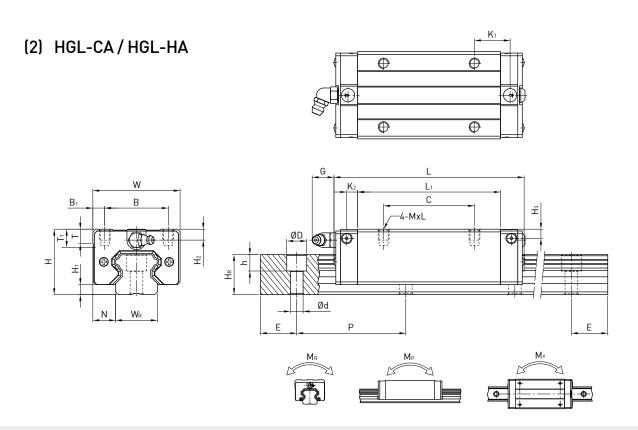
- L : Total length of rail (mm)
- n: Number of mounting holes
- P: Distance between any two holes (mm)
- E: Distance from the center of the last hole to the edge (mm)

Table 2-1-26 Rail Standard Length and Max. Length

unit: mm


Item	HG15	HG20	HG25	HG30	HG35	HG45	HG55	HG65
	160 (3)	220 (4)	220 (4)	280 (4)	280 (4)	570 (6)	780 (7)	1,270 (9)
	220 (4)	280 (5)	280 (5)	440 (6)	440 (6)	885 (9)	1,020 (9)	1,570 (11)
	280 (5)	340 (6)	340 (6)	600 (8)	600 (8)	1,200 (12)	1,260 (11)	2,020 (14)
	340 (6)	460 (8)	460 (8)	760 (10)	760 (10)	1,620 (16)	1,500 (13)	2,620 (18)
Standard Length L(n)	460 (8)	640 (11)	640 (11)	1,000 (13)	1,000 (13)	2,040 (20)	1,980 (17)	
	640 (11)	820 (14)	820 (14)	1,640 (21)	1,640 (21)	2,460 (24)	2,580 (22)	
	820 (14)	1,000 (17)	1,000 (17)	2,040 (26)	2,040 (26)	2,985 (29)	2,940 (25)	
		1,240 (21)	1,240 (21)	2,520 (32)	2,520 (32)			
			1,600 (27)	3,000 (38)	3,000 (38)			
Pitch (P)	60	60	60	80	80	105	120	150
Distance to End (E _s)	20	20	20	20	20	22.5	30	35
Max. Standard Length	4,000(67)	4,000 (67)	4,000 (67)	3,960 (50)	3,960 (50)	3,930 (38)	3,900 (33)	3,970 (27)
Max. Length	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000

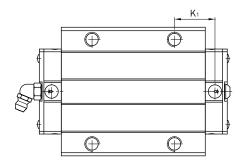
Note: 1. Tolerance of E value for standard rail is 0.5~-0.5 mm. Tolerance of E value for jointed rail is 0~-0.3 mm.

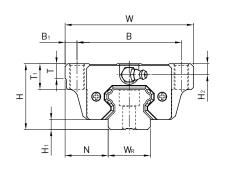

- 2. Maximum standard length means the max. rail length with standard E value on both sides.
- 3. If different E value is needed, please contact HIWIN.
- 4. HGR15/HGR20/HGR25 of stainless steel is supplied with the maximum length of 2000mm.

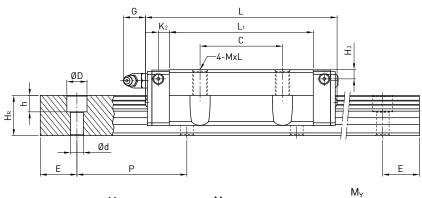
HG Series

Heavy Load Ball Type

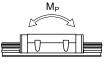
	of A		ions nbly)					Din	nensio	ons of	Bloc	k (m	m)				Di	mer	sior	ıs of	Rail	l (mr	m)	Mounting Bolt for Rail	Load	Static Load		atic Rat Moment		We	ight
Model No.																									Rating	Rating	\mathbf{M}_{R}	M_{P}	$M_{\rm Y}$	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	H _R	D	h	d	P	Е	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
HGH15CA	28	4.3	9.5	34	26	4	26	39.4	61.4	10	4.85	5.3	M4x5	6	7.95	7.7	15	15	7.5	5.3	4.5	60	20	M4x16	14.7	23.47	0.12	0.10	0.10	0.18	1.45
HGH20CA	00	, ,	10	,,	00	,			77.5		,	10	M5x6	0	,	,	00	45.5	٥.	٥٠	,	/0	00	N45 47	27.1	36.68	0.27	0.20	0.20	0.30	0.04
HGH20HA	30	4.6	12	44	32	6			92.2		6	12	M5X6	8	6	6	20	17.5	9.5	8.5	6	60	20	M5x16	32.7	47.96	0.35	0.35	0.35	0.39	2.21
HGH25CA			10.5	/0	٥٦	, -			84		,	10	M/ 0	0	10	•	00	00	11	•	_	/0	00	N4/ 00	34.9	52.82	0.42	0.33	0.33	0.51	0.04
HGH25HA	40	5.5	12.5	48	35	6.5			104.6		6	12	M6x8	8	10	9	23	22	11	9	/	60	20	M6x20	42.2	69.07	0.56	0.57	0.57	0.69	3.21
HGH30CA	,,	,	4./	/0		10			97.4		,	10	140, 40	٥.	0.5	10.0	00	0/	1/	10	0	00	00	N40. 05	48.5	71.87	0.66	0.53	0.53	0.88	, ,,,,
HGH30HA	45	6	16	60	40	10			120.4		6	12	M8x10	8.5	9.5	13.8	28	26	14	12	9	80	20	M8x25	58.6	93.99	0.88	0.92	0.92	1.16	4.47
HGH35CA		7.	10	70	F0	10			112.4			10	140, 40	10.0	1/	10./	0.4	00	1/	10	0	00	00	N40. 05	64.6	93.88	1.16	0.81	0.81	1.45	/ 00
HGH35HA	55	7.5	18	/U	50	10			138.2		/	12	M8x12	10.2	16	17.6	34	29	14	12	9	80	20	M8x25	77.9	122.77	1.54	1.40	1.40	1.92	6.30
HGH45CA	70	٥٠	00.5	0./	40	10	60	97	139.4	23	10	10.0	1440 45	1/	10.5	00.5	,-	20	00	10	4.	105	00.5	N440 0F	103.8	146.71	1.98	1.55	1.55	2.73	10 /1
HGH45HA	/0	9.5	20.5	86	60	13	80	128.8	171.2	28.9	10	12.9	MIUXI7	16	18.5	30.5	45	38	20	17	14	105	22.5	M12x35	125.3	191.85	2.63	2.68	2.68	3.61	10.41
HGH55CA	00	10	00.5	100	7.5	10.5			166.7		11	10.0	1440 40	15.5	00	00	- 0	,,	00	00	4.	100	00	N44 / / F	153.2	211.23	3.69	2.64	2.64	4.17	15.00
HGH55HA	80	13	23.5	100	/5	12.5			204.8		11	12.9	MIZXI8	17.5	22	29	53	44	23	20	16	120	30	M14x45	184.9	276.23	4.88	4.57	4.57	5.49	15.08
HGH65CA	00	45	04.5	10/	5 /	0.5			200.2		4.	40.0		0.5	45	45		F0	٥,	00	40	450	0.5	1447 50	213.2	287.48	6.65	4.27	4.27	7.00	24.40
HGH65HA	90	15	31.5	126	76	20			259.6		14	12.9	M16x20	25	15	15	63	53	26	22	18	150	35	M16x50	277.8	420.17	9.38	7.38	7.38	9.82	21.18

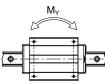


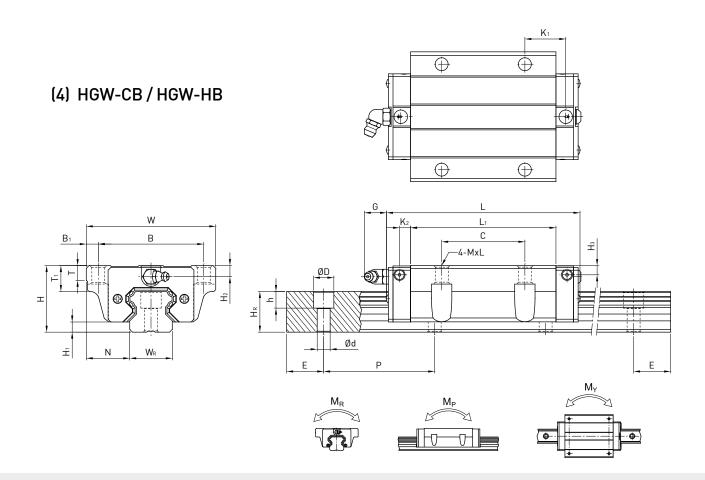

	of A	sse	sions mbly n)					Din	nensi	ons of	Bloc	k (m	m)				Di	men	sior	ns of	Rai	l (mi	m)	Mounting Bolt for Rail	Load	Static Load	Sta	atic Rat Momen		Wei	ight
No.																									Rating	Rating	M_R	M_P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	H _R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
HGL15CA	24	4.3	9.5	34	26	4	26	39.4	61.4	10	4.85	5.3	M4x4	6	3.95	3.7	15	15	7.5	5.3	4.5	60	20	M4x16	14.7	23.47	0.12	0.10	0.10	0.14	1.45
HGL25CA		5.5	12.5	<i>(</i> .0	25	4 5			84			12	M6x6	0	4	5	22	22	11	0	7	60	20	M6x20	34.9	52.82	0.42	0.33	0.33	0.42	3.21
HGL25HA		5.5	12.3	40	33	0.5		78.6			0	12	MOXO	0	0	J	23	22	11	7	,	00	20	MOXZU	42.2	69.07	0.56	0.57	0.57	0.57	3.21
HGL30CA			14	۷0	۷.۱	10		70				12	M8x10	0 5	4 5	10 0	20	24	1.6	12	0	on	20	M8x25	48.5	71.87	0.66	0.53	0.53	0.78	4.47
HGL30HA		0	10	00	40	10				21.75		12	MOXIU	0.5	0.5	10.0	20	20	14	12	7	00	20	MOXZJ	58.6	93.99	0.88	0.92	0.92	1.03	4.47
HGL35CA		7.5	10	70	EU	10		80			7	12	M8x12	10.2	0	12 4	2/	20	1.6	12	0	on	20	M8x25	64.6	93.88	1.16	0.81	0.81	1.14	6.30
HGL35HA								105.8			,	12	MOXIZ	10.2	7	12.0	34	27	14	12	7	ou	20	MOXZO	77.9	122.77	1.54	1.40	1.40	1.52	6.30
HGL45CA		0 5	20 E	0/				97		23	10	12.0	M10v17	1/	0 E	20 E	/ E	20	20	17	1/	105	22 E	M12x35	103.8	146.71	1.98	1.55	1.55	2.08	10.41
HGL45HA		7.5	20.5	00	00			128.8			10	12.7	MIUXI/	10	0.0	20.3	40	30	20	17	14	105	22.3	MIZXSS	125.3	191.85	2.63	2.68	2.68	2.75	10.41
HGL55CA								117.7			11	12.0	M12x18	17 5	12	10	53	44	23	20	1.6	120	30	M14x45	153.2	211.23	3.69	2.64	2.64	3.25	15.08
HGL55HA		13	23.3					155.8			11	12.7	IVI I Z X 10	17.3	12	17	JJ	44	23	20	10	120	30	M114X43	184.9	276.23	4.88	4.57	4.57	4.27	13.00


HG Series

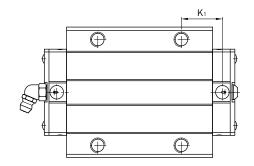
Heavy Load Ball Type

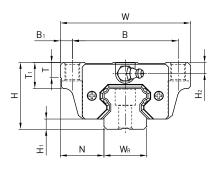

(3) HGW-CA / HGW-HA

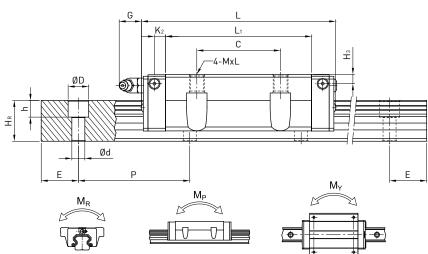




		sser	nbly					Dim	nensio	ns of	Bloo	:k (m	ım)					D	imer	nsion	ns of	Rai	l (mr	n)	Mounting Bolt for Rail	Dynamic Load	Load	Sta	ntic Rat Momen		Wei	ight
No.																										Rating			M_{P}			
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	T	T ₁	H ₂	H ₃	\mathbf{W}_{R}	H_R	D	h	d	Р	Е	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	k N -m	kg	kg/m
HGW15CA	24	4.3	16	47	38	4.5	30	39.4	61.4	8	4.85	5.3	M5	6	8.9	3.95	3.7	15	15	7.5	5.3	4.5	60	20	M4x16	14.7	23.47	0.12	0.10	0.10	0.17	1.45
HGW20CA		, ,	21 5	/2	F0	_	/0		77.5		,	10	14/	0	10	,	,	20	17.5	٥٢	٥٢	,	/0	20	MF1/	27.1	36.68	0.27	0.20	0.20	0.40	2.21
HGW20HA		4.0	21.5	63	53	Э	40		92.2		6	12	MO	8	10	0	0	20	17.5	7.5	8.5	6	60	20	MOXIO	32.7	47.96	0.35	0.35	0.35	0.52	2.21
HGW25CA		5.5	22.5	70	57	4 5	/5		84			12	МО	0	1.4		5	22	22	11	0	7	۷0	20	M4v20	34.9	52.82	0.42	0.33	0.33		3.21
HGW25HA		5.5	23.3	70	37	0.5	45		104.6		0	12	IMO	0	14	O	J	23	22	11	7	,	00	20	MOXZU	42.2	69.07	0.56	0.57	0.57		3.21
HGW30CA		,	21	00	72	0	Eo		97.4			12	M10	0 E	1/	/ E	10.0	20	2/	1/	10	0	00	20	M8x25	48.5	71.87	0.66	0.53	0.53	1.09	4.47
HGW30HA		0	31	90	12	9	52		120.4			12	МІО	8.5	16	6.5	10.8	28	26	14	12	9	80	20	MOXZO	58.6	93.99	0.88	0.92	0.92	1.44	4.47
HGW35CA		75	33	100	82	0	62		112.4		7	12	M10	10 1	1Ω	0	12.6	3/.	20	1.6	12	0	ΩN	20	M8x25	64.6	93.88	1.16	0.81	0.81	1.56	6.30
HGW35HA		7.5	33	100	02	,	02		138.2		,	12	14110	10.1	10	,	12.0	54	21	14	12	,	00	20	MOXZS	77.9	122.77	1.54	1.40	1.40	2.06	0.50
HGW45CA		0.5	27 E	120	100	10			139.4		10	12.0	M12	15 1	22	0 5	20 E	/ E	20	20	17	1.6	105	22 E	M12x35	103.8	146.71	1.98	1.55	1.55	2.79	10.41
HGW45HA		7.3	37.3	120	100	10			171.2		10	12.7	IVIIZ	13.1	22	0.5	20.5	43	30	20	17	14	103	22.3	MIZXOD	125.3	191.85	2.63	2.68	2.68	3.69	10.41
HGW55CA		10	/2 E	1/0	11/	10			166.7		11	12.0	M1/	17 E	2/ 5	10	10	EO	,,	22	20	1/	120	20	M14x45	153.2	211.23	3.69	2.64	2.64	4.52	15.08
HGW55HA		13	43.3	140	110	12			204.8		- 11	12.7	IVI I 4	17.5	20.0	12	17	55	44	23	20	10	120	30	MIAXAD	184.9	276.23	4.88	4.57	4.57	5.96	13.06
HGW65CA		15	F0 F	170	1/0	1/			200.2		1/	10.0	N41 /	25	27.5	15	15	/2	F2	27	22	10	150	25	M1/F0	213.2	287.48	6.65	4.27	4.27		21.10
HGW65HA		13	JJ.5	170	142	14			259.6		14	12.9	IVI I O	25	37.5	13	13	03	03	20	22	18	130	33	UCXOLIVI	277.8	420.17	9.38	7.38	7.38		21.18

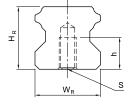


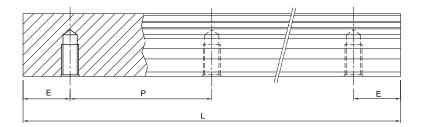

		sser	nbly						imen	sions	of B	lock	(mm	1)					Dii	men	sion	s of	Rail	. (m	m)	Mounting Bolt for Rail	Basic Dynamic Load	Static Load		atic Ra Momen		We	ight
No.																											Rating			M_{P}			
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	М	T	T ₁	T ₂	H ₂	H ₃	\mathbf{W}_{R}	H_R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
HGW15CB	24	4.3	16	47	38	4.5	30	39.4	61.4	8	4.85	5.3	Ø4.5	6	8.9	6.95	3.95	3.7	15	15	7.5	5.3	4.5	60	20	M4x16	14.7	23.47	0.12	0.10	0.10	0.17	1.45
HGW20CB		, ,	04.5	/0	F0	_	/0		77.5		,	10	a.	0	10	٥.	,	,	00	455	٥٦	٥٢	,	/0	00	N45 47	27.1	36.68	0.27	0.20	0.20	0.40	0.04
HGW20HB		4.6	21.5	63	53	5	40		92.2		6	12	Ø6	8	10	9.5	6	6	20	17.5	9.5	8.5	6	60	20	M5x16	32.7	47.96	0.35	0.35	0.35	0.52	2.21
HGW25CB								58	84	10.7																	34.9	52.82	0.42	0.33	0.33	0.59	
HGW25HB		5.5	23.5	70	57	6.5	45	78.6	104.6	21	6	12	Ø7	8	14	10	6	5	23	22	11	9	7	60	20	M6x20	42.2	69.07	0.56	0.57	0.57	0.80	3.21
HGW30CB									97.4																		48.5	71.87	0.66	0.53	0.53	1.09	
HGW30HB	42	6	31	90	72	9	52			25.75	6	12	Ø9	8.5	16	10	6.5	10.8	28	26	14	12	9	80	20	M8x25	58.6	93.99	0.88	0.92	0.92	1.44	4.47
HGW35CB								80	112.4	14.6																	64.6	93.88	1.16	0.81	0.81	1.56	
HGW35HB		7.5	33	100	82	9	62	105.8		27.5	7	12	Ø9	10.1	18	13	9	12.6	34	29	14	12	9	80	20	M8x25	77.9	122.77	1.54	1.40	1.40	2.06	6.30
HGW45CB								97	139.4	13																	103.8	146.71	1.98	1.55	1.55	2.79	
HGW45HB		9.5	37.5	120	100	10	80	128.8	171.2	28.9	10	12.9	Ø11	15.1	22	15	8.5	20.5	45	38	20	17	14	105	22.5	M12x35	125.3	191.85	2.63	2.68	2.68	3.69	10.41
HGW55CB								117.7	166.7	17.35																	153.2	211.23	3.69	2.64	2.64	4.52	
HGW55HB		13	43.5	140	116	12	95	155.8	204.8	36.4	11	12.9	Ø14	17.5	26.5	17	12	19	53	44	23	20	16	120	30	M14x45	184.9	276.23	4.88	4.57	4.57	5.96	15.08
HGW65CB									200.2	23.1																	213.2	287.48	6.65	4.27	4.27	9.17	
HGW65HB		15	53.5	170	142	14	110	203.6	259.6	52.8	14	12.9	Ø16	25	37.5	23	15	15	63	53	26	22	18	150	35	M16x50	277.8	420.17	9.38	7.38	7.38	12.89	21.18


HG Series

Heavy Load Ball Type

(5) HGW-CC / HGW-HC



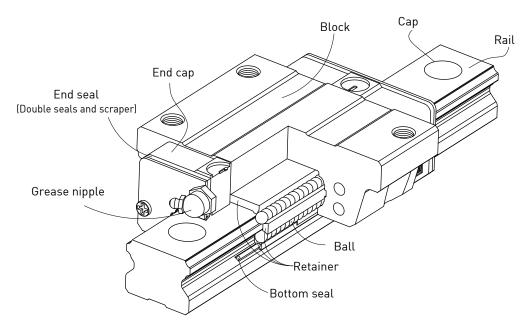


	Dim of A	ssen	nbly			Dimensions of Block (mm) Dimensions of Rail (n		l (m	m)	Mounting Bolt for Rail	Dynamic or Load	Load	Moment			We	ight																	
No.																											Rating	Rating	M_R	M_{P}	M _Y	Block	Rail	
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	T ₂	H ₂	H ₃	W _R	H _R	D	h	d	P	Е	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m	
HGW15CC	24	4.3	16	47	38	4.5	30	39.4	61.4	8	4.85	5.3	M5	6	8.9	6.95	3.95	3.7	15	15	7.5	5.3	4.5	60	20	M4x16	14.7	23.47	0.12	0.10	0.10	0.17	1.45	
HGW20CC		, ,	01.5	/0	F0	_			77.5			10			10	٥.	,	,	00	45.5	٥٠	٥٦	6 60 20	NE 47	27.1	36.68	0.27	0.20	0.20	0.40				
HGW20HC		4.6	21.5	63	53	5	40		92.2		6	12	M6	8	10	9.5	6	6	20	17.5	9.5	8.5	6	60	20	M5X16	32.7	47.96	0.35	0.35	0.35	0.52	2.21	
HGW25CC			00.5			, -	,-		84		,	10		•	4.	10	,	_				•	_		00		34.9	52.82	0.42	0.33	0.33	0.59		
HGW25HC		5.5	23.5	70	57	6.5	45			4.6 21			12 10	Mβ	8	14 1	10	6	5	23	22	11	7	7	60	20	NUXZU	42.2	69.07	0.56	0.57	0.57	0.80	3.21
HGW30CC		,	01	00	70	0	F0		97.4		,	10		٥٢	1.	10	, -	10.0	00	0/	1.1	10	•	00	00	M8x25	48.5	71.87	0.66	0.53	0.53		4.47	
HGW30HC		6	31	90	12	9	52		120.4		6	12	MIU	8.5	16	10	6.5	10.8	28	26	14	12	9	80	20	M8X25	58.6	93.99	0.88	0.92	0.92			
HGW35CC		7.5	00	100	00	0			112.4			10	1440	10.1	10	10	0	10 /	0.4	00	1.1	10	0	00	00	140.05	64.6	93.88	1.16	0.81	0.81		6.30	
HGW35HC	48	7.5	33	100	82	9			138.2		/	12	MIU	10.1	18	13	9	12.6	34	29	14	12	9	80	20	M8x25	77.9	122.77	1.54	1.40	1.40			
HGW45CC		٥٠	07.5	100	100	10	00	97	139.4		10	10.0		15.1	00	15	0.5	00.5	,-	00	00	457	1/	105	00.5	1410.05	103.8	146.71	1.98	1.55	1.55	2.79		
HGW45HC		9.5	37.5	120	100	10		128.8	171.2		10	12.9	MIZ	15.1	22	15	8.5	20.5	45	38	20	17	14	105	22.5	M12x35	125.3	191.85	2.63	2.68	2.68	3.69	10.41	
HGW55CC		10	/2 F	1/0	11/	10		117.7	166.7		11	10.0	M1/	17 5	2/ 5	17	10	10	F2	,,	22	20	1/	100	20	M1//F	153.2	211.23	3.69	2.64	2.64	4.52		
HGW55HC		13	43.5	140	116	12		155.8	204.8		11	12.9	M14	17.5	26.5	17	12	19	53	44	23	20	10	120	30	M14x45	184.9	276.23	4.88	4.57	4.57	5.96	15.08	
HGW65CC		15	F2 F	170	1/0	1/			200.2		1/	10.0	M1/	25	27.5	22	15	15	/2	F2	2/	22	10	150	٥٢	M1/F0	213.2	287.48	6.65	4.27	4.27	9.17	21.18	
HGW65HC		13	53.5	170	142	14	110		259.6		14	12.9	IVI I O	20	37.5	23	15	13	03	53	20	22	18	130	33	M16x50	277.8	420.17	9.38	7.38	7.38	12.89		

(6) Dimesions for HGR-T (Rail Mounting from Bottom)

Model No.	Dimensions of R	Dimensions of Rail (mm)									
	W_R	H _R	S	h	Р	Е	(kg/m)				
HGR15T	15	15	M5 x 0.8P	8	60	20	1.48				
HGR20T	20	17.5	M6 x 1P	10	60	20	2.29				
HGR25T	23	22	M6 x 1P	12	60	20	3.35				
HGR30T	28	26	M8 x 1.25P	15	80	20	4.67				
HGR35T	34	29	M8x1.25P	17	80	20	6.51				
HGR45T	45	38	M12 x 1.75P	24	105	22.5	10.87				
HGR55T	53	44	M14 x 2P	24	120	30	15.67				
HGR65T	63	53	M20 x 2.5P	30	150	35	21.73				

Low Profile Ball Type

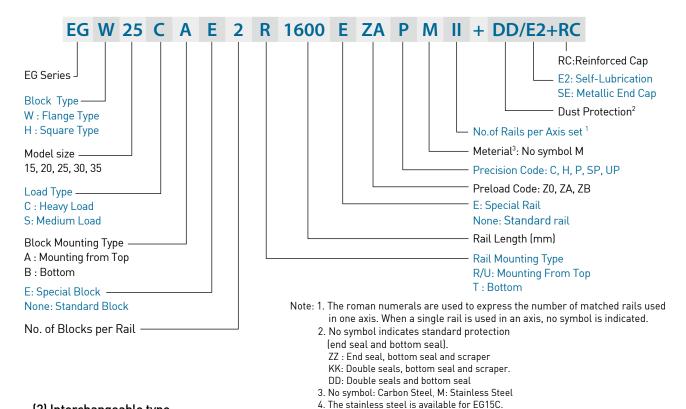

2-2 EG Series - Low Profile Ball Type Linear Guideway

2-2-1 Features of the EG Series Linear Guideway

The design of the EG series offers a low profile, high load capacity, and high rigidity. It also features an equal load rating in all four directions and self-aligning capability to absorb installation-error, allowing for higher accuracies. Additionally, the lower assembly height and the shorter length make the EG series more suitable for high-speed, automation machines and applications where space is limited.

The retainer is designed to hold the balls in the block even when it is removed from the rail.

2-2-2 Construction of EG Series

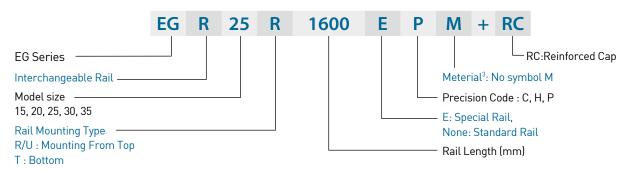


- Rolling circulation system: Block, rail, end cap and retainer
- Lubrication system: Grease nipple and piping Joint
- Dust protection system: End seal, bottom seal, cap and scraper

2-2-3 Model Number of EG Series

EG series linear guideways are classified into non-interchangeable and interchangeable types. The sizes of these two types are the same as one another. The main difference is that the interchangeable type of blocks and rails can be freely exchanged and they can maintain P-class accuracy. Because of strict dimensional control, the interchangeable type linear guideways are a wise choice for customers when rails do not need to be matched for an axis. The model number of the EG series identifies the size, type, accuracy class, preload class, etc.

(1) Non-interchangeable type



(2) Interchangeable type

Model Number of EG Block

EG W 25 C A E ZA P M + DD/E2 - E2: Self-Lubricant EG Series SE: Metallic End Cap Block Type Dust Protection² W : Flange Type Meterial³: No symbol M H: Square Type Precision Code: C. H. P Model size Preload Code: Z0, ZA 15, 20, 25, 30, 35 E: Special Block Load Type -None: Standard block C: Heavy Load **Block Mounting Type** S: Medium Load A: Mounting From Top B: Bottom

Model Number of EG Rail

Low Profile Ball Type

2-2-4 Types

(1) Block types

HIWIN offers two types of linear guideways, flange and square types.

Table 2-2-1 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	EGH-SA EGH-CA		24 ↓ 48	100 ↓ 4000	 Automation devices High-speed transportation equipment Precision measuring
Flange	EGW-SA EGW-CA		24 ↓ 48	100 ↓ 4000	equipment Semiconductor manufacturing equipment
ш	EGW-SB EGW-CB		24 ↓ 48	100 ↓ 4000	

^{*}Please refer to the chapter 2-2-13 for the dimensional detail.

(2) Rail types

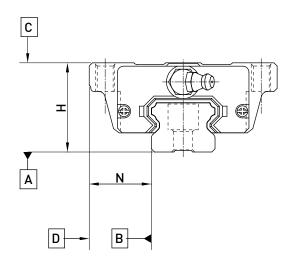

Besides the standard top mounting type, HIWIN also offers bottom mounting type rails.

Table 2-2-2 Rail Types

2-2-5 Accuracy

The accuracy of the EG series can be classified into 5 classes: normal(C), high(H), precision(P), super precision(SP), and ultra precision(UP). Choose the class by referencing the accuracy of selected equipment.

(1) Accuracy of non-interchangeable guideways

Table 2-2-3 Accuracy Standards

Unit: mm

					• · · · · · · · · · · · · · · · · · · ·
Item	EG - 15, 20				
Accuracy Classes	Normal (c)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Dimensional tolerance of width N	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Variation of height H	0.02	0.01	0.006	0.004	0.003
Variation of width N	0.02	0.01	0.006	0.004	0.003
Running parallelism of block surface C to surface A			See Table 2-2-	-7	
Running parallelism of block surface D to surface B $$			See Table 2-2-	-7	

Table 2-2-4 Accuracy Standards

Unit: mm

Item EG - 25, 30, 35					
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.02	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A			See Table 2-2-	-7	
Running parallelism of block surface D to surface B			See Table 2-2-	-7	

Low Profile Ball Type

(2) Accuracy of interchangeable guideways

Table 2-2-5 Accuracy Standards

Unit: mm

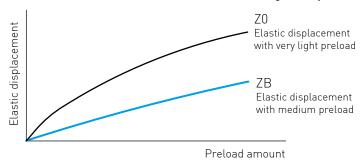
Item	EG - 15, 20				
Accuracy Classes	Normal (C)	High (H)	Precision (P)		
Dimensional tolerance of height H	± 0.1	± 0.03	± 0.015		
Dimensional tolerance of width N	± 0.1	± 0.03	± 0.015		
Variation of height H	0.02	0.01	0.006		
Variation of width N	0.02	0.01	0.006		
Running parallelism of block surface C to surface A	See Table 2-2-7				
Running parallelism of block surface D to surface B	See Table 2-2-7				

Table 2-2-6 Accuracy Standards

Unit: mm

		Offit: Iffiff		
EG - 25, 30, 35				
Normal (C)	High (H)	Precision (P)		
± 0.1	± 0.04	± 0.02		
± 0.1	± 0.04	± 0.02		
0.02	0.015	0.007		
0.03	0.015	0.007		
	See Table 2-2-7			
See Table 2-2-7				
	Normal (c) ± 0.1 ± 0.1 0.02	Normal (H) (C) (H) ± 0.1 ± 0.04 ± 0.1 ± 0.04 0.02 0.015 0.03 0.015 See Table 2-2-7		

(3) Accuracy of running parallelism


Table 2-2-7 Accuracy of Running Parallelism

	_				
Rail Length (mm)	Accuracy (µm)				
	С	Н	P	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7

2-2-6 Preload

(1) Definition

A preload can be applied to each guideway. Generally, a linear motion guideway has a negative clearance between the groove and balls in order to improve stiffness and maintain high precision. The figure shows that adding a preload can improve stiffness of the linear guideway. A preload no greater than ZA would be recommended for model sizes smaller than EG20. This will avoid an over-loaded condition that would affect guideway life.

(2) Preload classes

HIWIN offers three standard preloads for various applications and conditions.

Table 2-2-8 Preload Classes

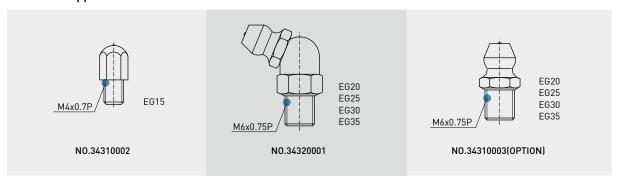
Class	Code	Preload	Condition			
Very Light Preload	ZO	0~ 0.02C	Certain load direction, low impact, low precision required			
Light Preload	ZA	0.03C~0.05C	low load and high precision required			
Medium Preload	ZB 0.06C~ 0.08C		High rigidity required, with vibration and impact			
Class	Interchangeable G	Guideway	Non-Interchangeable Guideway			
Preload classes	Z0, ZA		Z0, ZA, ZB			

Note: The "C" in the preload column denotes basic dynamic load rating.

(3) Stiffness performance

Stiffness depends on preload. The following table shows stiffness value of each size.

Table 2-2-9 Radial stiffness for EG Series


Load type	Series / Size	Stiffness (N/µm)						
Load type	Series / Size	Z0	ZA	ZB				
	EG 15S	87	186	246				
	EG 20S	114	267	369				
Medium load	EG 25S	138	307	415				
	EG 30S	166	335	447				
	EG 35S	189	369	492				
	EG 15C	141	323	429				
	EG 20C	181	444	615				
Heavy load	EG 25C	219	510	668				
	EG 30C	265	555	745				
	EG 35C	307	615	816				

Low Profile Ball Type

2-2-7 Lubrication

(1) Grease

Grease nipple

Mounting location

The standard location of the grease fitting is at both ends of the block, the nipple may be mounted in the side or top of the block. For lateral installation, we recommend that the nipple be mounted to the non-reference side, otherwise please contact us. When lubricating from above, in the recess for the O-ring, a smaller, preformed recess can be found. Preheat the 0.8 mm diameter metal tip. Carefully open the small recess with the metal tip and pierce through it. Insert a round sealing ring into the recess. (The round sealing ring is not supplied with the block) Do not open the small recess with a drill bit this may introduce the danger of contamination. It is possible to carry out the lubrication by using the oil-piping joint.

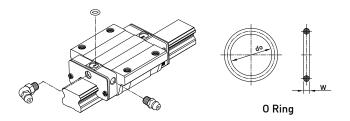
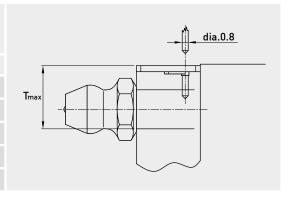



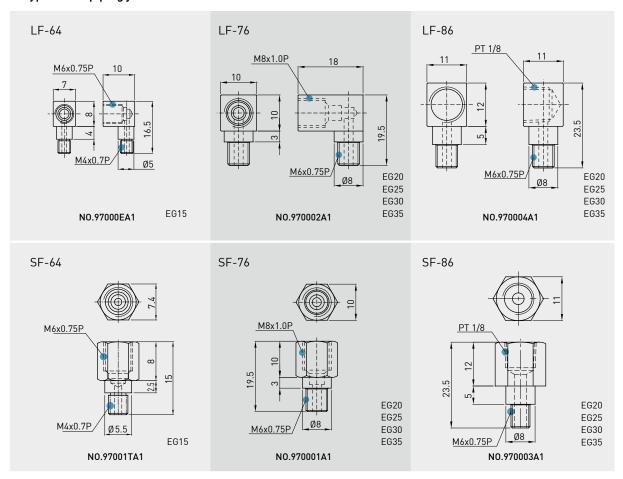
Table 2-2-10 O-Ring size and max. permissible depth for piercing

Size	0-Ring		Lube hole at top: max. permissible depth for piercing	
	do(mm)	W (mm)	T _{max} (mm)	
EG15	2.5 ± 0.15	1.5 ± 0.15	6.9	
EG20	4.5 ± 0.15	1.5 ± 0.15	8.4	
EG25	4.5 ± 0.15	1.5 ± 0.15	10.4	
EG30	4.5 ± 0.15	1.5 ± 0.15	10.4	
EG35	4.5 ± 0.15	1.5 ± 0.15	10.8	

• The oil amount for a block filled with grease

Table 2-2-11 The oil amount for a block filled with grease

Size	Medium Load (cm³)	Heavy Load (cm³)
EG15	0.8	1.4
EG20	1.5	2.4
EG25	2.8	4.6
EG30	3.7	6.3
EG35	5.6	6.6


• Frequency of replenishment

Check the grease every 100 km, or every 3-6 months.

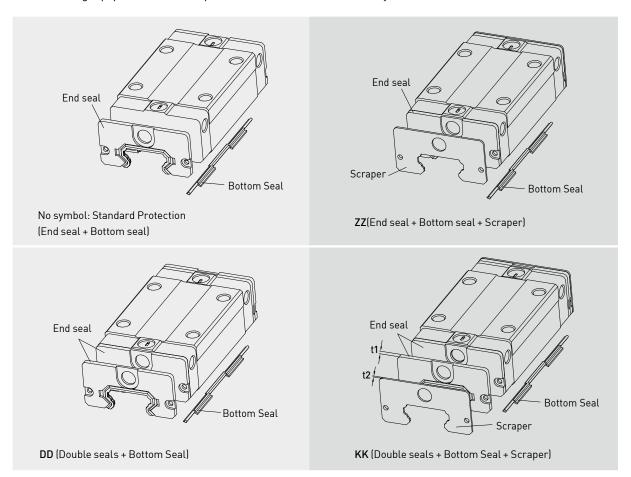
(2) Oil

The recommended viscosity of oil is about 32~150cSt. If you need to use oil-type lubrication, please inform us.

Types of oil piping joint

Oil feeding rate

Table 2-2-12 oil feed rate


Size	feed rate	Size	feed rate		
	(cm³/hr)		(cm³/hr)		
EG15	0.1	EG30	0.2		
EG20	0.133	EG35	0.233		
EG25	0.167				

Low Profile Ball Type

2-2-8 Dust Protection Equipment

(1) Codes of equipment

If the following equipment is needed, please indicate the code followed by the model number.

(2) End seal and bottom seal

Protects against contaminants entering the block. Reduces potential for groove damage resulting in a reduction of life ratings.

(3) Double seals

Removing foreign matters from the rail to prevent contaminants from entering the block.

Table 2-2-13 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
EG15 ES	2	EG30 ES	2
EG20 ES	2	EG35 ES	2
EG25 ES	2		

(4) Scraper

Clears larger contaminants, such as weld spatter and metal cuttings, from the rail. Metal scraper protects end seals from excessive damage.

Table 2-2-14 Dimensions of Scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
EG15 SC	0.8	EG30 SC	1
EG20 SC	0.8	EG35 SC	1.5
EG25 SC	1		

(5) Bolt caps for rail mounting holes

Rail mounting hole caps prevent foreign matter from accumulating in the mounting holes. Caps are included with the rail package.

Table 2-2-15 Dimensions of Bolt Caps for Rail Mounting Holes

Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)
EGR15R	M3	6.15	1.2
EGR20R	M5	9.65	2.5
EGR25R	M6	11.15	2.5
EGR30R	M6	11.15	2.5
EGR35R	M8	14.20	3.5
EGR15U	M4	7.65	1.1
EGR30U	M8	14.20	3.5

(6) Dimensions of block equipped with the dustproof parts

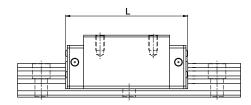


Table 2-2-16 Overall block length

unit: mm

Size	Overall block length (L)				
Size	SS	ZZ	DD	KK	
EG15S	40.1 (42.5)	41.7 (46.1)	44.1 (46.5)	45.7 (50.1)	
EG15C	56.8 (59.2)	58.4 (62.8)	60.8 (63.2)	62.4 (66.8)	
EG20S	50.0 (54.0)	51.6 (57.6)	54.0 (58.0)	55.6 (61.6)	
EG20C	69.1 (73.1)	70.7 (76.7)	73.1 (77.1)	74.7 (80.7)	
EG25S	59.1 (63.1)	61.1 (67.1)	63.1 (67.1)	65.1 (71.1)	
EG25C	82.6 (86.6)	84.6 (90.6)	86.6 (90.6)	88.6 (94.6)	
EG30S	69.5 (73.5)	71.5 (77.5)	73.5 (77.5)	75.5 (81.5)	
EG30C	98.1 (102.1)	100.1 (106.1)	102.1 (106.1)	104.1 (110.1)	
EG35S	75.0 (79.0)	78.0 (84.0)	79.0 (83.0)	82.0 (88.0)	
EG35C	108.0 (112.0)	111.0 (117.0)	112.0 (116.0)	115.0 (121.0)	

Note: The marking of "[]" denotes the maximum block length with screws, lips of end seals, etc.

Low Profile Ball Type

2-2-9 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-2-17 Seal Resistance

Size	Resistance N (kgf)
EG15	1.47 (0.15)
EG20	1.96 (0.2)
EG25	1.96 (0.2)
EG30	2.45 (0.25)
EG35	1.96 (0.2)

Note: 1. 1kgf=9.81N

2-2-10 Mounting Surface Accuracy Tolerance

Because of the circular-arc contact design, the EG linear guideway can withstand surface-error installation and deliver smooth linear motion. When the mounting surface meets the accuracy requirements of the installation, the high accuracy and rigidity of the guideway will be obtained without any difficulty. For faster installation and smoother movement, HIWIN offers a preload with normal clearance because of its ability to absorb higher deviations in mounting surface inaccuracies.

Table 2-2-18 Max. Parallelism Tolerance (P)

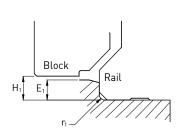
unit: µm

			uni	ι. μιτι
Size	Preload classes			
512e	Z0	ZA	ZB	
EG15	25	18	-	
EG20	25	20	18	
EG25	30	22	20	
EG30	40	30	27	
EG35	50	35	30	

Table 2-2-19 Max. Tolerance of Reference Surface Height (S₁)

unit: µm

Size	Preload classes			
Size	Z0	ZA	ZB	
EG15	130	85	-	
EG20	130	85	50	
EG25	130	85	70	
EG30	170	110	90	
EG35	210	150	120	


Note: Permissible value is proportional to the axial distance

^{2.} Please inform HIWIN if low friction request is required.

2-2-11 Cautions for Installation

(1) Shoulder heights and chamfers

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

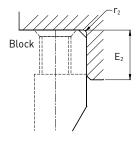


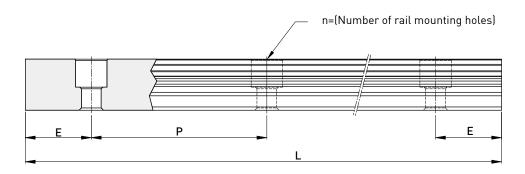
Table 2-2-20 Shoulder Heights and Chamfers

unit: mm

Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
EG15	0.5	0.5	2.7	5.0	4.5
EG20	0.5	0.5	5.0	7.0	6.0
EG25	1.0	1.0	5.0	7.5	7.0
EG30	1.0	1.0	7.0	7.0	10.0
EG35	1.0	1.0	7.5	9.5	11.0

(2) Tightening Torque of Bolts for Installation

Improperly tightened mounting bolts will seriously affect the accuracy of linear guide installations. The following tightening torques for different sizes of bolts are recommended.


Table 2-2-21 Tightening Torque

Size	Bolt size	Torque N-cm(kgf-cm)			
Size		Iron	Casting	Aluminum	
EG 15	M3×0.5P×16L	186 (19)	127 (13)	98 (10)	
EG 20	M5×0.8P×16L	883 (90)	588 (60)	441 (45)	
EG 25	M6×1P×20L	1373 (140)	921 (94)	686 (70)	
EG 30	M6×1P×25L	1373 (140)	921 (94)	686 (70)	
EG 35	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)	

Low Profile Ball Type

2-2-12 Standard and Maximum Lengths of Rail

HIWIN offers a number of standard rail lengths. Standard rail lengths feature end mounting hole placements set to predetermined values (E). For non-standard rail lengths, be sure to specify the E-value to be no greater than 1/2 the pitch (P) dimension. An E-value greater than this will result in unstable rail ends.

 $L = (n-1) \times P + 2 \times E$ Eq.2.2

- L: Total length of rail (mm)
- n: Number of mounting holes
- P: Distance between any two holes (mm)
- E: Distance from the center of the last hole to the edge (mm)

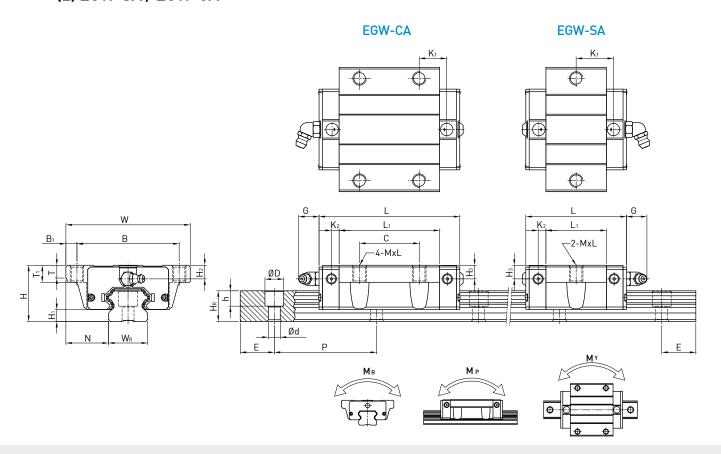
Table 2-2-22 Rail Standard Length and Max. Length

unit: mm

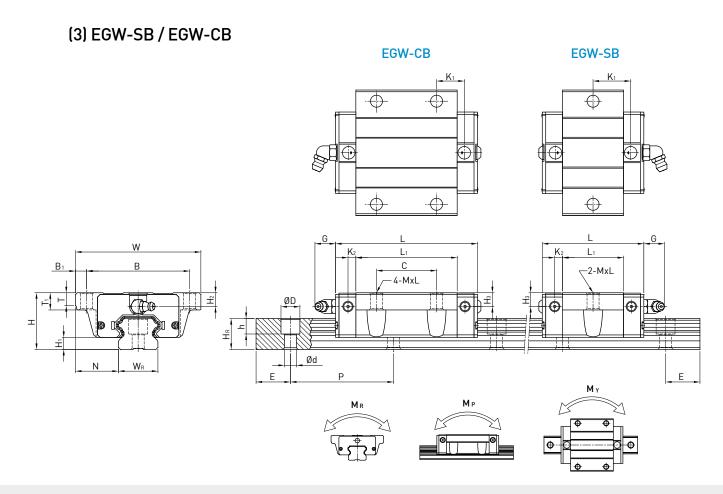
Item	EGR15	EGR20	EGR25	EGR30	EGR35
	160 (3)	220 (4)	220 (4)	280 (4)	280 (4)
	220 (4)	280 (5)	280 (5)	440 (6)	440 (6)
	280 (5)	340 (6)	340 (6)	600 (8)	600 (8)
	340 (6)	460 (8)	460 (8)	760 (10)	760 (10)
Standard Length L(n)	460 (8)	640 (11)	640 (11)	1,000 (13)	1,000 (13)
	640 (11)	820 (14)	820 (14)	1,640 (21)	1,640 (21)
	820 (14)	1,000 (17)	1,000 (17)	2,040 (26)	2,040 (26)
		1,240 (21)	1,240 (21)	2,520 (32)	2,520 (32)
		1,600 (27)	1,600 (27)	3,000 (38)	3,000 (38)
Pitch (P)	60	60	60	80	80
Distance to End (E _s)	20	20	20	20	20
Max. Standard Length	4,000(67)	4,000 (67)	4,000 (67)	3,960 (50)	3,960 (50)
Max. Length	4,000	4,000	4,000	4,000	4,000

Note: 1. Tolerance of E value for standard rail is $0.5\sim0.5$ mm. Tolerance of E value for jointed rail is $0\sim0.3$ mm.

- 2. Maximum standard length means the max. rail length with standard E value on both sides.
- 3. If different E value is needed, please contact HIWIN.
- 4. EGR15 of stainless steel is supplied with the maximum length of 2000mm.

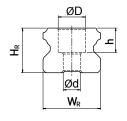

2-2-13 Dimensions for HIWIN EG Series

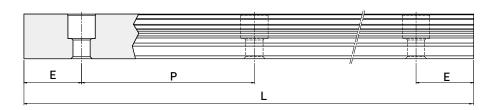
(1) EGH-SA / EGH-CA EGH-CA EGH-SA Ф Ф Ф 0 \Diamond Ф L_1 С Βı ─2-MxL -4-MxL 0 **(** Ød


	of A	ensi ssen	nbly					Dim	ensio	ns of E	Block	(mn	n)				Di	men	sior	ns of	Rai	l (mi	m)	Mounting Bolt for Rail	Load	Load	Sta N	atic Rat Momen		We	ight
Model No.																								Nun	Rating	Rating	M_R	M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	Lı	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	H _R	D	h	d	Р	E	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
EGH15SA	0.1	, -	٥٠	0.1	0.4	,				14.8			M/ /	,		,	15	10.5	,	, -	٥٠	40	00	140.47	5.35	9.40	0.08	0.04	0.04	0.09	1.05
EGH15CA	24	4.5	9.5	34	26	4				10.15		5./	M4X6	6	5.5	6	15	12.5	6	4.5	3.5	60	20	M3x16	7.83	16.19	0.13	0.10	0.10	0.15	1.25
EGH20SA		,			00	_				18.75		40			,	,	00	45.5	٥.5	٥.	,		00	NE 47	7.23	12.74	0.13	0.06	0.06	0.15	0.00
EGH20CA	28	6	11	42	32	5				12.3		12	M5x7	7.5	6	6	20	15.5	9.5	8.5	6	60	20	M5x16	10.31	21.13	0.22	0.16	0.16	0.24	2.08
EGH25SA	00	_	40.5		0.5	, -				21.9		40		•		•	00	40		•	_		00		11.40	19.50	0.23	0.12	0.12	0.25	0.45
EGH25CA	33	7	12.5	48	35	6.5				16.15	4.55	12	M6x9	8	8	8	23	18	11	9	7	60	20	M6x20	16.27	32.40	0.38	0.32	0.32	0.41	2.67
EGH30SA	,,									26.75															16.42	28.10	0.40	0.21	0.21	0.45	
EGH30CA	42	10	16	60	40	10				21.05		12	M8x12	9	8	9	28	23	11	9	7	80	20	M6x25	23.70	47.46	0.68	0.55	0.55	0.76	4.35
EGH35SA		44	40		F0	40	-	45		28.5	_	40	140.45	40	0.5	٥.5	0.1	05.5	4.	40		00		140.05	22.66	37.38	0.56	0.31	0.31	0.74	
EGH35CA	48	11	18	70	50	10	50	78	108	20	7	12	M8x12	10	8.5	8.5	34	27.5	14	12	9	80	20	M8x25	33.35	64.84	0.98	0.69	0.69	1.10	6.14

Low Profile Ball Type

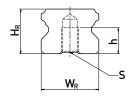
(2) EGW-SA / EGW-CA

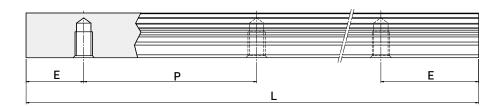

	Dim of A	sser	mbly					Dim	nensio	ons of	Bloc	k (m	m)					Dir	nens	sion	s of	Rai	l (m	m)	Mounting Bolt for Rail	Luau	Luau	Sta	atic Ra Iomen		Wei	ight
Model No.																										Rating				M_{Y}		
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	W_R	H_R	D	h	d	P	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
EGW15SA	2/	4.5	10 5	52						14.8		5.7	M5	5	7	5.5	4	15	12 5	4	4.5	2.5	40	20	M3x16	5.35	9.40	0.08	0.04	0.04	0.12	1.25
EGW15CA	24	4.5	10.5	JZ	41					10.15		J./	IVIJ	J	'	5.5	U	13	12.5	U	4.5	5.5	00	20	MOXIO	7.83	16.19	0.13	0.10	0.10	0.21	1.25
EGW20SA	28	6	19.5	59	//9	5				18.75		12	M4	7	q	6	6	20	15 5	95	85	6	40	20	M5x16	7.23	12.74	0.13	0.06	0.06	0.19	2.08
EGW20CA	20	U	17.5	37	47	J				12.3		12	IVIO	,	′	Ü	U	20	13.3	7.5	0.5	U	00	20	MUXIO	10.31	21.13	0.22	0.16	0.16	0.32	2.00
EGW25SA	33	7	25	72					59.1		4.55	12	МΩ	75	10	Ω	Ω	23	1Ω	11	0	7	40	20	M6x20	11.40	19.50	0.23	0.12	0.12	0.35	2.67
EGW25CA	33	,	23	73	00	0.5				16.15		12	IMO	7.3	10	0	0	23	10	11	7	,	00	20	MOXZU	16.27	32.40	0.38	0.32	0.32	0.59	2.07
EGW30SA	/.2	10	31	on	72				69.5	26.75		12	M10	7	10	0	0	20	22	11	0	7	on	20	M6x25	16.42	28.10	0.40	0.21	0.21	0.62	4.35
EGW30CA	42	10	31	70	12	7				21.05		12	IVIIU	,	10	0	7	20	23	"	7	,	00	20	MOXZJ	23.70	47.46	0.68	0.55	0.55	1.04	4.33
EGW35SA	/. Q	11	33	100	82	Q			75		7	12	M10	10	12	0 5	0 5	27	27 F	1.	12	0	on	20	M8x25	22.66	37.38	0.56	0.31	0.31	0.84	6.14
EGW35CA	40	-11	33	100	OΖ	7				20		12	MIO	10	13	0.0	0.0	34	27.3	14	12	7	οU	20	CYXOIM	33.35	64.84	0.98	0.69	0.69	1.45	0.14



			nbly					Dim	nensi	ons o	f Blo	ck (n	nm)					Di	mer	sior	ns of	Rai	l (mi	m)	Mounting Bolt for Rail	Load	Load		atic Rat Momen		Wei	ight
Model No.																										Rating	Rating	M_R	M _P	M_{Y}	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	\mathbf{W}_{R}	H _R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
EGW15SB	0.1	, -	40.5	50				23.1	40.1	14.8	0.5		a	_	_		,	45	40.5	,	, -	٥.		00	140.47	5.35	9.40	0.08	0.04	0.04	0.12	4.05
EGW15CB	24	4.5	18.5	52	41	5.5		39.8	56.8	10.15		5.7	Ø4.5	5	7	5.5	6	15	12.5	6	4.5	3.5	60	20	M3x16	7.83	16.19	0.13	0.10	0.10	0.21	1.25
EGW20SB	28	,	19.5	F0	49	_	-	29	50	18.75	4.15	10	ØF F	7	9	,	,	20	15.5	0.5	0.5	,	60	20	ME1/	7.23	12.74	0.13	0.06	0.06	0.19	2.08
EGW20CB	28	6	17.5	37	47	Э	32	48.1	69.1		4.15	12	พร.ร	/	9	6	6	20	15.5	7.5	8.5	6	60	20	M5x16	10.31	21.13	0.22	0.16	0.16	0.32	2.08
EGW25SB	33	7	25	72	/0	6.5	-	35.5	59.1		4.55	12	Ø7	7 5	10	8	8	23	18	11	9	7	60	20	M6x20	11.40	19.50	0.23	0.12	0.12	0.35	2.67
EGW25CB	33	,	23	/3	00	0.0	35	59	82.6	16.15		12	W/	7.5	10	0	0	23	10	- 11	7	/	00	20	MOXZU	16.27	32.40	0.38	0.32	0.32	0.59	2.07
EGW30SB	42	10	21	00	70	0	-	41.5	69.5	26.75	6	12	Ø9	7	10	0	9	20	22	11	0	7	00	20	M/2F	16.42	28.10	0.40	0.21	0.21	0.62	4.35
EGW30CB	42	10	31	90	12	9	40	70.1	98.1	21.05	6	12	Ø9	/	10	8	9	28	23	11	9	/	80	20	M6x25	23.70	47.46	0.68	0.55	0.55	1.04	4.35
EGW35SB	48	11	22	100	02	0	-	45	75	28.5	7	12	Ø0.	10	12	8.5	0 E	27	27 F	1/	12	0	00	20	Movor	22.66	37.38	0.56	0.31	0.31	0.84	/ 1/
EGW 35CB	48	11	33	100	82	9	50	78	108	20	/	12	Ø9	10	13	6.5	6.5	34	27.5	14	12	9	80	20	M8x25	33.35	64.84	0.98	0.69	0.69	1.45	6.14

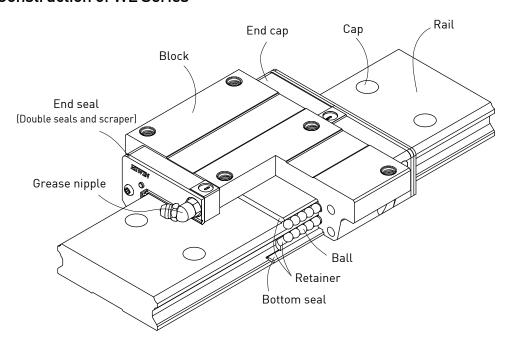
Low Profile Ball Type


(4) Dimensions for EGR-U (large mounting hole, rail mounting from top)



Model No.	Mounting Bolt	Dimensions o	of Rail (mm)						Weight
	,	\mathbf{W}_{R}	H_R	D	h	d	Р	E	(kg/m)
EGR15U	M4x16	15	12.5	7.5	5.3	4.5	60	20	1.23
EGR30U	M8x25	28	23	14	12	9	80	20	4.23

(5) Dimensions for EGR-T (rail mounting from bottom)


Model No.	Dimensions of F	tail (mm)					Weight
	W_R	H _R	S	h	Р	Е	(kg/m)
EGR15T	15	12.5	M5 x 0.8P	7	60	20	1.26
EGR20T	20	15.5	M6 x 1P	9	60	20	2.15
EGR25T	23	18	M6 x 1P	10	60	20	2.79
EGR30T	28	23	M8 x 1.25P	14	80	20	4.42
EGR35T	34	27.5	M8 x 1.25P	17	80	20	6.34

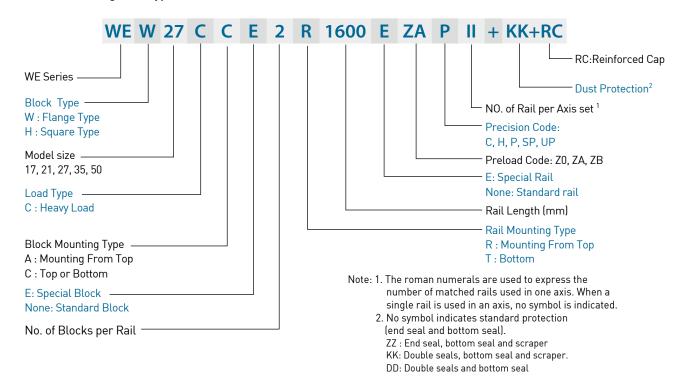
2-3 WE Type – Four-Row Wide Rail Linear Guideway

2-3-1 Construction

The WE series features equal load ratings in the radial, reverse radial and the lateral direction with contact points at 45 degrees. This along with the wide rail, allows the guide way to be rated for high loads, moments and rigidity. By design, it has a self-aligning capacity that can absorb most installation errors and can meet high accuracy standards. The ability to use a single rail and to have the low profile with a low center of gravity is ideal where space is limited and/or high moments are required.

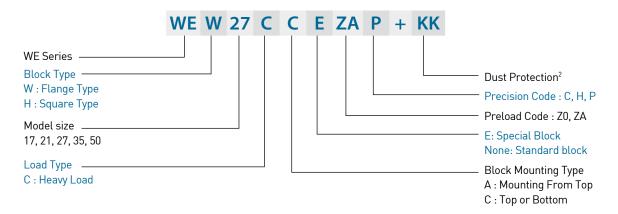
2-3-2 Construction of WE Series

- Rolling circulation system: Block, rail, end cap and retainer
- Lubrication system: Grease nipple and piping Joint
- O Dust protection system: End seal, bottom seal, cap and scraper

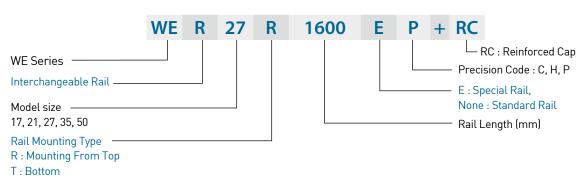

2-3-3 Model Number of WE Series

WE series linear guideways are classified into non-interchangeable and interchangeable types. The sizes of these two types are the same as one another. The main difference is that the interchangeable type of blocks and rails can be freely exchanged and they can maintain P-class accuracy. Because of strict dimensional control, the interchangeable type linear guideways are a wise choice for customers when rails do not need to be matched for an axis. The model number of the WE series identifies the size, type, accuracy class, preload class, etc.

WE Series


Four-Row Wide Rail

(1) Non-interchangeable type



(2) Interchangeable type

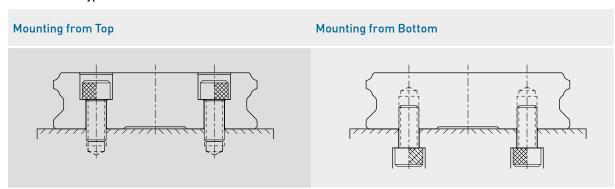
Model Number of WE Block

Model Number of WE Rail

2-3-4 Types

(1) Block types

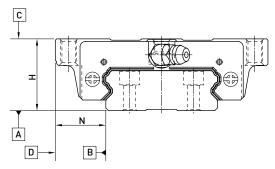
HIWIN offers two types of linear guideways, flange and square types.


Table 2-3-1 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	WEH-CA 17, 21		17 ↓ 21	100 ↓ 4000	Authreation High-speed transportation equipment Precision
Square	WEH-CA 27, 35, 50		27 ↓ 50	100 ↓ 4000	measuring equipment Semiconductor manufacturing equipment Blow Moulding machines
Flange	WEW-CC		17 ↓ 50	100 ↓ 4000	 Single Axis Robot-Robotics Single Axis Equipment with High Anti-rolling Requirement

(2) Rail types

Besides the standard top mounting type, HIWIN also offers bottom mounting type rails.


Table 2-3-2 Rail Types

2-3-5 Accuracy

The accuracy of the WE series can be classified into 5 classes: normal(C), high(H), precision(P), super precision(SP), and ultra precision(UP). Choose the class by referencing the accuracy of selected equipment.

(1) Accuracy of non-interchangeable guideways

Table 2-3-3 Accuracy Standards									U	nit: mm
Туре	WE - 1	7, 21				WE - 2	7, 35			
Accuracy Classes	Normal	High	Precision	Super Precision	Ultra Precision	Normal	High	Precision	Super Precision	Ultra Precision
•	(C)	(H)	(P)	(SP)	(UP)	(C)	(H)	(P)	(SP)	(UP)
Dimensional tolerance of height H	±0.1	±0.03	0 - 0.03	0 - 0.015	0 - 0.008	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	±0.1	±0.03	0 - 0.03	0 - 0.015	0 - 0.008	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.02	0.01	0.006	0.004	0.003	0.02	0.015	0.007	0.005	0.003
Variation of width N	0.02	0.01	0.006	0.004	0.003	0.03	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A					See Ta	ble 2-3-5				
Running parallelism of block surface D to surface B					See Ta	ble 2-3-5				
Туре	WE - 5	0								
Accuracy Classes	Normal		High		Precision	n	Super Precis		Ultra Precisio	n
,			(H)		(P)		(SP)		(UP)	
Dimensional tolerance of height H	±0.1		±0.05		0 - 0.05		0 - 0.00	3	0 - 0.02	
Dimensional tolerance of width N	±0.1		±0.05		0 - 0.05		0 - 0.03	3	0 - 0.02	
Variation of height H	0.03		0.015		0.007		0.005	5	0.003	

0.02

0.03

0.01

See Table 2-3-5

See Table 2-3-5

0.007

(2) Accuracy of interchangeable guideways

Table 2-3-4	Accuracy Standards	

Running parallelism of block

Running parallelism of block

Variation of width N

surface C to surface A

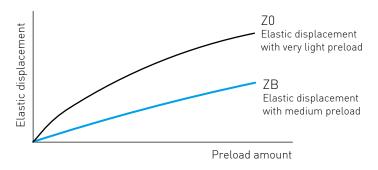
surface D to surface B

Unit: mm

0.005

rable 2 5 1 Mecaracy Standards									Ollic. Illilli	
Item	WE - 17,	21		WE - 27,	35		WE - 50			
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Normal (C)	High (H)	Precision (P)	Normal (C)	High (H)	Precision (P)	
Dimensional tolerance of height H	± 0.1	± 0.03	± 0.015	± 0.1	± 0.04	± 0.02	± 0.1	± 0.05	± 0.025	
Dimensional tolerance of width N	± 0.1	± 0.03	± 0.015	± 0.1	± 0.04	± 0.02	± 0.1	± 0.05	± 0.025	
Variation of height H	0.02	0.01	0.006	0.02	0.015	0.007	0.03	0.015	0.007	
Variation of width N	0.02	0.01	0.006	0.03	0.015	0.007	0.03	0.02	0.01	
Running parallelism of block surface C to surface A	See Table 2-3-5									
Running parallelism of block surface D to surface B	See Table 2-3-5									

(3) Accuracy of running parallelism


Table 2-3-5 Accuracy of Running Parallelism

Rail Length (mm)	Accuracy (µm)				
3	С	Н	Р	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7

2-3-6 Preload

(1) Definition

A preload can be applied to each guideway. Generally, a linear motion guideway has a negative clearance between the groove and balls in order to improve stiffness and maintain high precision. The figure shows that adding a preload can improve stiffness of the linear guideway.

(2) Preload classes

HIWIN offers three standard preloads for various applications and conditions.

Table 2-3-6 Preload Classes

Class	Code	Preload	Condition
Very Light Preload	Z0	0~ 0.02C	Certain load direction, low impact, low precision requirement
Light Preload	ZA	0.03C~0.05C	low load and high precision requirement
Medium Preload	ZB	0.06C~0.08C	High rigidity requirement, with vibration and impact
Class	Interchangeab	le Guideway	Non-Interchangeable Guideway
Preload classes	Z0, ZA		Z0, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

(3) Stiffness performance

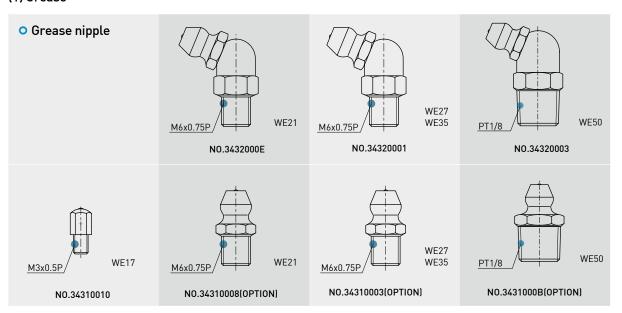

Stiffness depends on preload. The following table shows stiffness value of each size.

Table 2-3-7 Radial stiffness for WE Series

Load type	Series / Size	Stiffness (N/µm)		
		Z0	ZA	ZB
Heavy load	WE 17C	130	342	469
	WE 21C	153	368	497
	WE 27C	188	476	651
	WE 35C	285	607	804
	WE 50C	429	758	1042

2-3-7 Lubrication

(1) Grease

Mounting location

The standard location of the grease fitting is at both ends of the block, the nipple may be mounted in the side or top of the block. For lateral installation, we recommend that the nipple be mounted to the non-reference side, otherwise please contact us. When lubricating from above, in the recess for the 0-ring, a smaller, preformed recess can be found. Preheat the 0.8 mm diameter metal tip. Carefully open the small recess with the metal tip and pierce through it. Insert a round sealing ring into the recess. (The round sealing ring is not supplied with the block) Do not open the small recess with a drill bit this may introduce the danger of contamination. It is possible to carry out the lubrication by using the oil-piping joint.

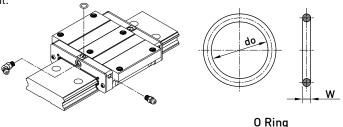
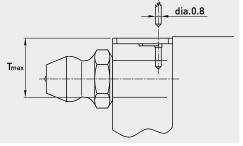
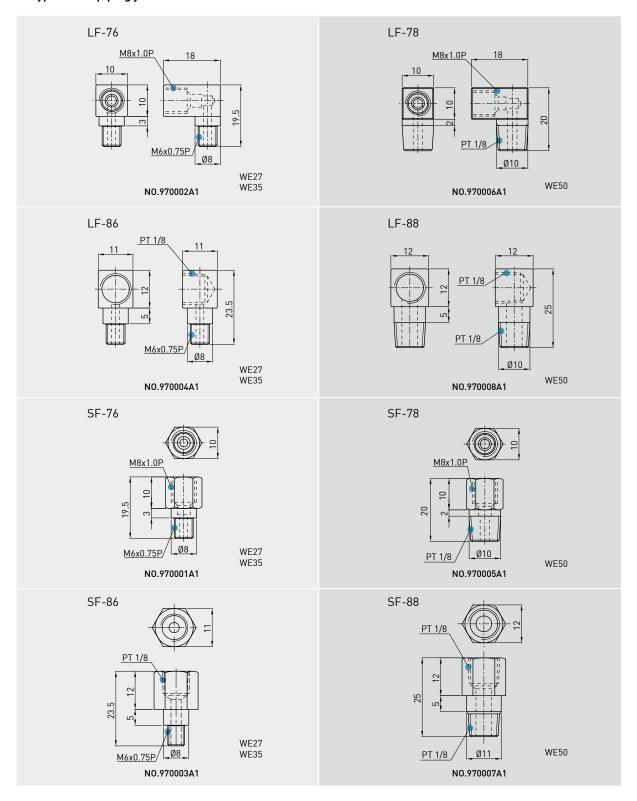



Table 2-3-8 O-Ring size and max. permissible depth for piercing

Size	0-Ring		Lube hole at top: max. permissible depth for piercing
	do(mm)	W (mm)	T _{max} (mm)
WE 21	2.5 ± 0.15	1.5 ± 0.15	4.2
WE 27	4.5 ± 0.15	1.5 ± 0.15	5.8
WE 35	4.5 ± 0.15	1.5 ± 0.15	7.6
WE 50	4.5 ± 0.15	1.5 ± 0.15	11.8

• The oil amount for a block filled with grease

Table 2-3-9 The oil amount for a block filled with grease


Size	Heavy Load (cm³)	Size	Heavy Load (cm³)
WE 17	1.4	WE 35	9.5
WE 21	2.4	WE 50	20
WE 27	3.6		

Frequency of replenishment

Check the grease every 100 km, or every 3-6 months.

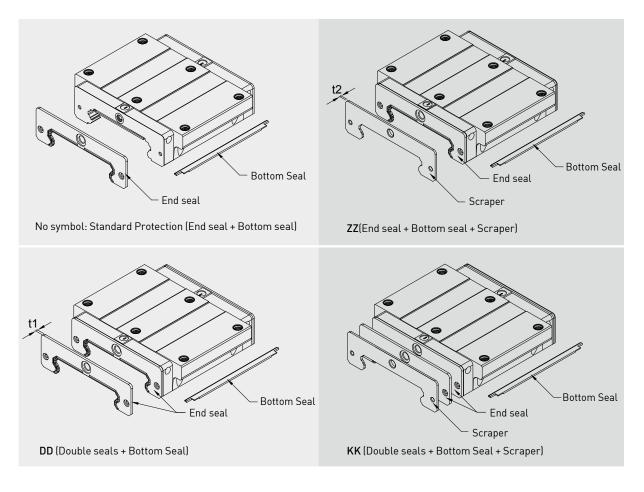
(2) Oil
The recommended viscosity of oil is about 30~150cSt. If you need to use oil-type lubrication, please inform us.

Types of oil piping joint

WE Series

Four-Row Wide Rail

Oil feeding rate


Table 2-3-10 oil feed rate

Size	feed rate (cm³/hr)
WE 17	0.15
WE 21	0.2
WE 27	0.2
WE 35	0.3
WE 50	0.4

2-3-8 Dust Protection Equipment

(1) Codes of equipment

If the following equipment is needed, please indicate the code followed by the model number.

(2) End seal and bottom seal

Protects against contaminants entering the block. Reduces potential for groove damage resulting in a reduction of life ratings.

(3) Double seals

Removes foreign matter from the rail preventing contaminants from entering the block.

Table 2-3-11 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
WE 17 ES	1.6	WE 35 ES	2
WE 21 ES	2	WE 50 ES	2.5
WE 27 ES	2		

(4) Scraper

Clears larger contaminants, such as weld spatter and metal cuttings, from the rail. Metal scraper protects end seals from excessive damage.

Table 2-3-12 Dimensions of Scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
WE 17 SC	1	WE 35 SC	1.5
WE 21 SC	1	WE 50 SC	1
WE 27 SC	1		

(5) Bolt caps for rail mounting holes

Rail mounting hole caps prevent foreign matter from accumulating in the mounting holes. Caps are included with the rail package.

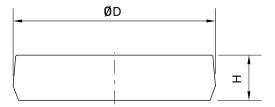


Table 2-3-13 Dimensions of Bolt Caps for Rail Mounting Holes

Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)
WER17R	M4	7.65	1.1
WER21R	M4	7.65	1.1
WER27R	M4	7.65	1.1
WER35R	M6	11.15	2.5
WER50R	M8	14.20	3.5

WE Series

Four-Row Wide Rail

(6) Dimensions of block equipped with the dustproof parts

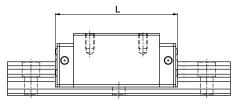


Table 2-3-14 Overall block length

unit: mm

Size	Overall block length	n (L)		
Size	SS	ZZ	DD	KK
WE17C	50.6 (51.5)	52.6 (55.6)	53.8 (55.0)	55.8 (58.8)
WE21C	59.0 (63.0)	61.0 (67.0)	63.0 (67.0)	65.0 (71.0)
WE27C	72.8 (77.2)	74.8 (80.8)	76.8 (81.2)	78.8 (84.8)
WE35C	102.6 (106.6)	105.6 (111.6)	106.6 (110.6)	109.6 (115.6)
WE50C	140.0 (141.6)	142.0 (146.2)	145.0 (146.6)	147.0 (151.2)

Note: The marking of "()" denotes the maximum block length with screws, lips of end seals, etc.

2-3-9 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-3-15 Seal Resistance

Size	Resistance N (kgf)	Size	Resistance N (kgf)
WE 17	1.18 (0.12)	WE 35	3.92 (0.4)
WE 21	1.96 (0.2)	WE 50	3.92 (0.4)
WE 27	2.94 (0.3)		

Note:1kgf=9.81N

2-3-10 Mounting Surface Accuracy Tolerance

Because of the circular-arc contact design, the WE linear guideway can withstand surface-error installation and deliver smooth linear motion. When the mounting surface meets the accuracy requirements of the installation, the high accuracy and rigidity of the guideway will be obtained without any difficulty. For faster installation and smoother movement, HIWIN offers a preload with normal clearance because of its ability to absorb higher deviations in mounting surface inaccuracies.

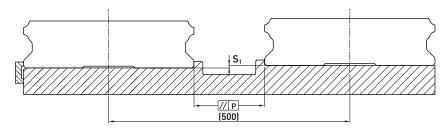


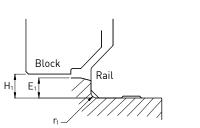
Table 2-3-16 Max. Parallelism Tolerance (P)

unit: um

		٠,					
Size	Preload o	classes		Size	Preload	classes	
Size	Z 0	ZA	ZB	Size	Z0	ZA	ZB
WE 17	20	15	9	WE 35	30	22	20
WE 21	25	18	9	WE 50	40	30	27
WE 27	25	20	13				

Table 2-3-17 Max. Tolerance of Reference Surface Height (S₁)

unit: µm


Size	Preload class	ses		Size	Preload class	ses	
Size	Z 0	ZA	ZB	Size	Z 0	ZA	ZB
WE 17	65	20	-	WE 35	130	85	70
WE 21	130	85	45	WE 50	170	110	90
WE 27	130	85	45				

Note: Permissible value is proportional to the axial distance.

2-3-11 Cautions for Installation

(1) Shoulder heights and chamfers

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

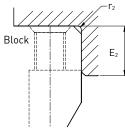


Table 2-3-18 Shoulder Heights and Chamfers

unit: mm

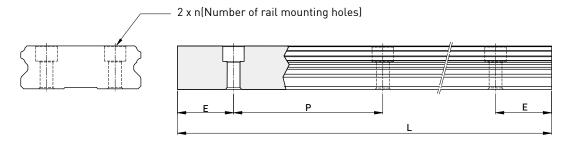
Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
WE 17	0.4	0.4	2.0	4.0	2.5
WE 21	0.4	0.4	2.5	5.0	3.0
WE 27	0.5	0.4	3.0	7.0	4.0
WE 35	0.5	0.5	3.5	10.0	4.0
WE 50	0.8	0.8	6.0	10.0	7.5

(2) Tightening Torque of Bolts for Installation

Improperly tightened mounting bolts will seriously affect the accuracy of linear guide installations. The following tightening torques for different sizes of bolts are recommended.

Table 2-3-19 Tightening Torque

Size	Bolt size	Torque N-cm(kgf-cm)		
3126	Dott Size	Iron	Casting	Aluminum
WE 17	M4×0.7P×12L	392(40)	274(28)	206(21)
WE 21	M4×0.7P×12L	392(40)	274(28)	206(21)
WE 27	M4×0.7P×16L	392(40)	274(28)	206(21)
WE 35	M6×1P×20L	1373(140)	921(94)	686(70)
WE 50	M8×1.25P×25L	3041(310)	2010(205)	1470(150)


Note: 1 kgf = 9.81 N

WE Series

Four-Row Wide Rail

2-3-12 Standard and Maximum Lengths of Rail

HIWIN offers a number of standard rail lengths. Standard rail lengths feature end mounting hole placements set to predetermined values (E). For non-standard rail lengths, be sure to specify the E-value to be no greater than 1/2 the pitch (P) dimension. An E-value greater than this will result in unstable rail ends.

 $L=(n-1)\times P+2\times E$ Eq.2.3

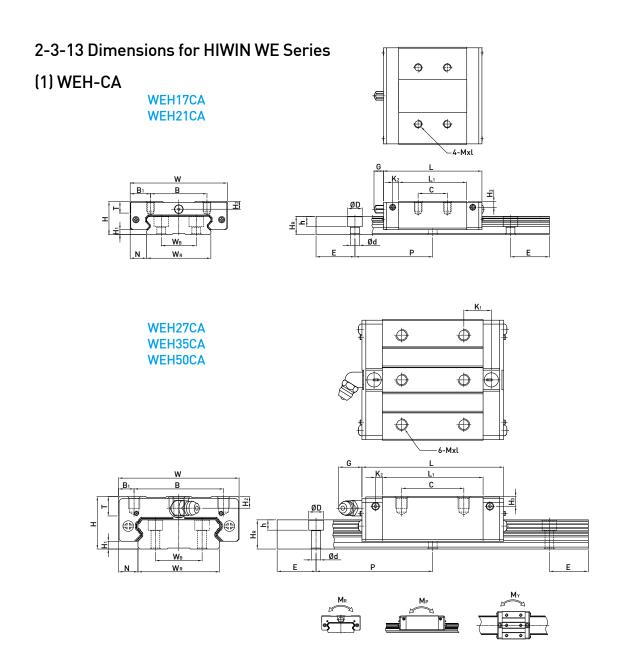
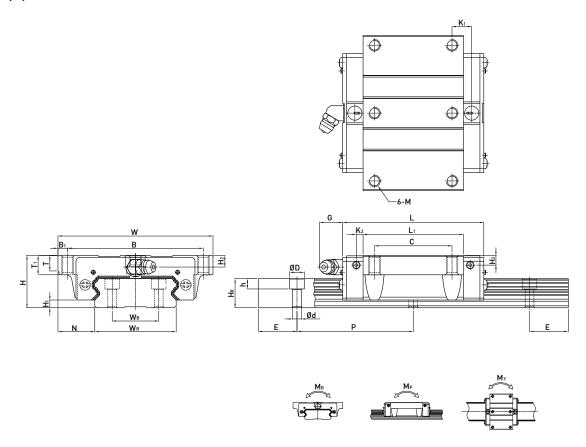

- L: Total length of rail (mm)
- n: Number of mounting holes
- P: Distance between any two holes (mm)
- E: Distance from the center of the last hole to the edge (mm)

Table 2-3-20 Rail Standard Length and Max. Length

unit: mm

Item	WER17	WER21	WER27	WER35	WER50
	110 (3)	130 (3)	220 (4)	280 (4)	280 (4)
	190 (5)	230 (5)	280 (5)	440 (6)	440 (6)
	310 (8)	380 (8)	340 (6)	600 (8)	600 (8)
	390 (10)	480 (10)	460 (8)	760 (10)	760 (10)
Standard Length L(n)	470 (12)	580 (12)	640 (11)	1000 (13)	1,000 (13)
	550 (14)	780 (16)	820 (14)	1,640 (21)	1,640 (21)
	-	-	1,000 (17)	2,040 (26)	2,040 (26)
	-	-	1,240 (21)	2,520 (32)	2,520 (32)
	-	-	1,600 (27)	3,000 (38)	3,000 (38)
Pitch (P)	40	50	60	80	80
Distance to End (E _s)	15	15	20	20	20
Max. Standard Length	3,990 (100)	3,980 (80)	4,000 (67)	3,960 (50)	3,960 (50)
Max. Length	4,000	4,000	4,000	4,000	4,000

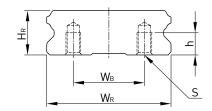
- Note: 1. Tolerance of E value for standard rail is $0.5\sim0.5$ mm. Tolerance of E value for jointed rail is $0\sim0.3$ mm.
 - 2. Maximum standard length means the max. rail length with standard E value on both sides.
 - 3. If different E value is needed, please contact HIWIN.

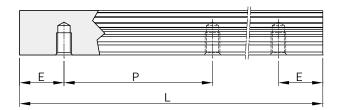

	Dimensions of Assembly Model No. (mm)							Dime	ensio	ns of	Bloc	k (m	m)				Dimensions of Rail (mm)					mm)		Bolt for Rail	Load	Load	Stati Mom	c Rated ent	d	We	ight	
Model No.			,																						rtuit	Rating	Rating	M_R	M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	W _B	H _R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
WEH17CA	17	2.5	8.5	50	29	10.5	15	35	50.6	-	3.1	4.9	M4x5	6	4	3	33	18	9.3	7.5	5.3	4.5	40	15	M4x12	5.23	9.64	0.15	0.062	0.062	0.12	2.2
WEH21CA	21	3	8.5	54	31	11.5	19	41.7	59	14.68	3.65	12	M5x6	8	4.5	4.2	37	22	11	7.5	5.3	4.5	50	15	M4x12	7.21	13.7	0.23	0.10	0.10	0.20	3.0
WEH27CA	27	4	10	62	46	8	32	51.8	72.8	14.15	3.5	12	M6x6	10	6	5	42	24	15	7.5	5.3	4.5	60	20	M4x16	12.4	21.6	0.42	0.17	0.17	0.35	4.7
WEH35CA	35	4	15.5	100	76	12	50	77.6	102.6	18.35	5.25	12	M8x8	13	8	6.5	69	40	19	11	9	7	80	20	M6x20	29.8	49.4	1.48	0.67	0.67	1.1	9.7
WEH50CA	50	7.5	20	130	100	15	65	112	140	28.05	6	12.9	M10x15	19.5	12	10.5	90	60	24	14	12	9	80	20	M8x25	61.52	97.1	4.03	1.96	1.96	3.16	15.5

Note : 1 kgf = 9.81 N

WE Series

Four-Row Wide Rail


(2) WEW-CC



	Dimensions of Assembly Dimensions of Block (mm) (mm)						Dimensions of Rail (mm)					Bolt for Rail Load	Load	Moment			Wei	ight															
Model No.																											Rating	Rating	M_R	M _P	M_{Y}	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	W _R	W _B	H_R	D	h	d	P	E	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
WEW17CC	17	2.5	13.5	60	53	3.5	26	35	50.6	-	3.1	4.9	M4	5.3	6	4	3	33	18	9.3	7.5	5.3	4.5	40	15	M4x12	5.23	9.64	0.15	0.062	0.062	0.13	2.2
WEW21CC	21	3	15.5	68	60	4	29	41.7	59	9.68	3.65	12	M5	7.3	8	4.5	4.2	37	22	11	7.5	5.3	4.5	50	15	M4x12	7.21	13.7	0.23	0.10	0.10	0.23	3.0
WEW27CC	27	4	19	80	70	5	40	51.8	72.8	10.15	3.5	12	M6	8	10	6	5	42	24	15	7.5	5.3	4.5	60	20	M4x16	12.4	21.6	0.42	0.17	0.17	0.43	4.7
WEW35CC	35	4	25.5	120	107	6.5	60	77.6	102.6	13.35	5.25	12	M8	11.2	14	8	6.5	69	40	19	11	9	7	80	20	M6x20	29.8	49.4	1.48	0.67	0.67	1.26	9.7
WEW50CC	50	7.5	36	162	144	9	80	112	140	20.55	6	12.9	M10	14	18	12	10.5	90	60	24	14	12	9	80	20	M8x25	61.52	97.1	4.03	1.96	1.96	3.71	15.5

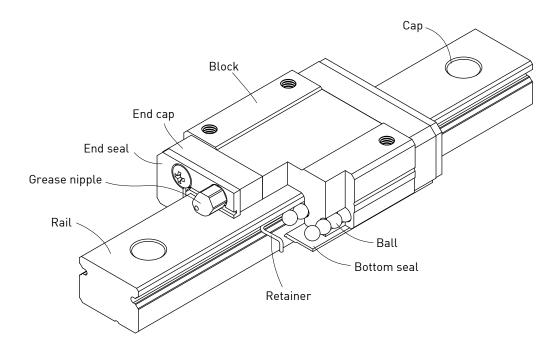
Note : 1 kgf = 9.81 N

(3) Dimensions for WER-T (rail mounting from bottom)

Model No.	Dimensions of	Rail (mm)						Weight
	W_R	W _B	H _R	S	h	Р	Е	(kg/m)
WER17T	33	18	9.3	M4 x 0.7P	6	40	15	2.3
WER21T	37	22	11	M4 x 0.7P	7	50	15	3.1
WER27T	42	24	15	M5 x 0.8P	7.5	60	20	4.8
WER35T	69	40	19	M6 x 1P	12	80	20	9.9
WER50T	90	60	24	M8 x 1.25P	15	80	20	15.9

MG Series

Miniature Type

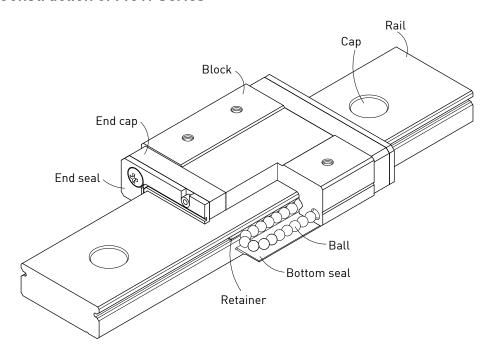

2-4 MG Series - Miniature Linear Guideway

2-4-1 Features of MGN Series

Design features of narrow type miniature guideways- MGN:

- 1. Tiny and light weight, suitable for miniature equipment.
- 2. Gothic arch contact design can sustain loads from all directions and offer high rigidity and high accuracy.
- 3. Specification with ball retainers would avoid ball falling when the blocks are removed from rails.
- 4. Interchangeable types are available in certain sizes and precision grades.

2-4-2 Construction of MGN Series


- Rolling circulation system: Block, rail, ball, end cap and retainer (except size 2, 3)
- Lubrication system: Grease nipple is available for MGN15, lubricated by grease gun. MGN7, 9, 12 are lubricated by the hole at the side of the end cap.
- Dust protection system: End seal (except size 2), bottom seal (optional size 9,12,15), cap (size12,15)

2-4-3 Features of MGW Series

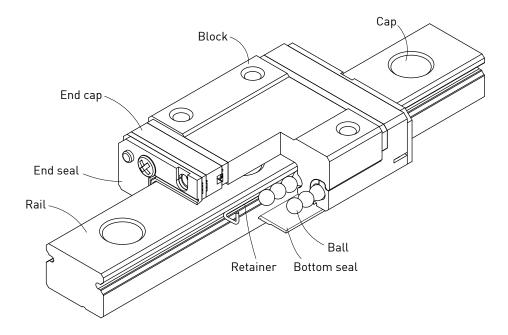
Design features of wide type miniature guideways- MGW:

- 1. The enlarged width design increases the capacity of moment loading.
- 2. Gothic arch contact design has high rigidity characteristic in all directions.
- 3. Specification with ball retainers would avoid ball falling when the blocks are removed from rails.
- 4. Interchangeable types are available in certain sizes and precision grades.

2-4-4 Construction of MGW Series

- Rolling circulation system: Block, rail, ball, end cap and retainer (except size 2)
- Lubrication system: Grease nipple is available for MGW14, 15, lubricated by grease gun. MGW3, 7, 9, 12 are lubricated by the hole at the side of the end cap.
- Dust protection system: End seal (except size 2), bottom seal (optional size 9,12,14,15), cap (size12,14,15)

MG Series

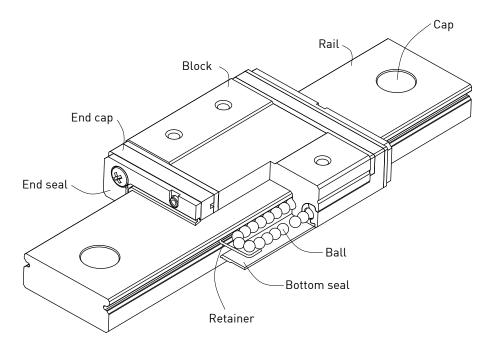

Miniature Type

2-4-5 Features of MGN-0 Series

Design features of narrow type miniature guideways- MGN-0:

- 1. Reduce 20% weight of block by using resin in the recirculation unit. The copmact size and light weight is suitable for miniturized machinery.
- 2. Gothic arch contact design can sustain loads from all directions and offer high rigidity and high accuracy.
- 3. Interchangeable types are available in certain precision grades.
- 4. The design of resin recirculation unit which is able to eliminate the collision with the metal block.
- 5. Integrated design for recirculation system.

2-4-6 Construction of MGN-0 Series



- O Rolling circulation system: Block, rail, ball, end cap and retainer
- Lubrication system: Grease nipple is available for MGN15-0, lubricated by grease gun.
 MGN5-0, MGN7-0, MGN9-0, MGN12-0 are lubricated by the hole at the side of the end cap.
- Dust protection system: End seal, bottom seal (optional size 9,12,15), cap (size12,15)

Design features of wide type miniature guideways- MGW-0:

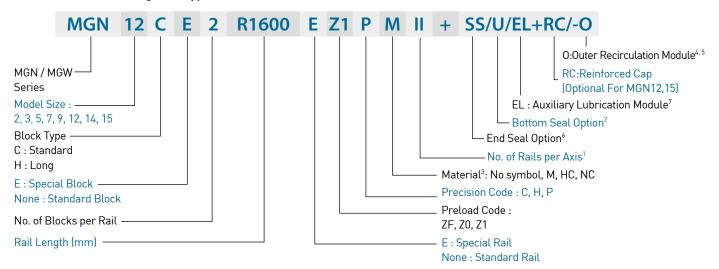
- 1. The enlarged width design increases the capacity of moment loading.
- 2. Gothic arch contact design has high rigidity characteristic in all directions.
- 3. Steel balls are held by a miniature retainer to keep balls from falling out, even when the blocks are removed from the rail
- 4. Integrated design for recirculation system, which reduce 20% weight of block by using resin in the recirculation unit.

2-4-8 Construction of MGW-0 Series

- O Rolling circulation system: Block, rail, ball, end cap and retainer
- Lubrication system: Grease nipple is available for MGW15-0, lubricated by grease gun. MGW5-0, MGW7-0, MGW9-0, MGW12-0 are lubricated by the hole at the side of the end cap.
- O Dust protection system: End seal, bottom seal (optional size 9, 12, 15), cap (size12, 15)

2-4-9 Application

MGN/MGW series can be used in various applications, such as semiconductor equipment, PCB /IC equipment, medical, robotics, measuring equipment, automation equipment, and other miniature sliding machinery.


2-4-10 Model Number of MG Series

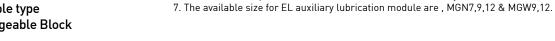
MG Series linear guideway can be classified into non-interchangeable and interchangeable types, which are the same size. The interchangeable type is more convenient due to replaceable rails; however, the precision is less than non-interchangeable type. With strict dimension and quality control, the interchangeable type linear guideways are a suitable choice for customers when rails don't need to be paired. The model number contains information for the size, type, accuracy, preload, and so on.

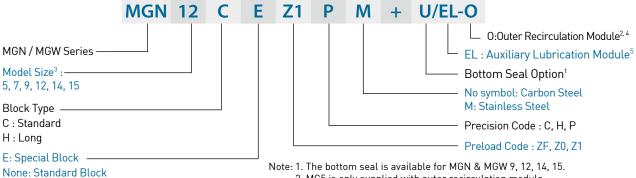
MG Series

Miniature Type

(1) Non-interchangeable type

Note: 1. Symbol for No. of rails used on the same plane.

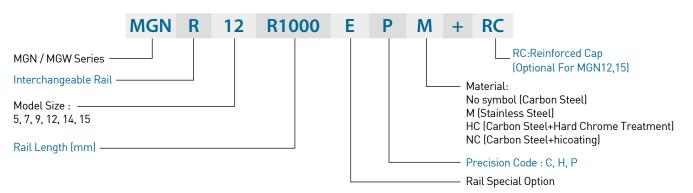

No symbol indicates single rail in a axis.


- 2. The bottom seal is available for MGN & MGW 9, 12, 14, 15.
- 3. No symbol: Carbon Steel

M: Stainless Steel

HC: Carbon Steel+Hard Chrome Treatment

- NC: Carbon Steel+hicoating Treatment
- 4. MG5 is only supplied with outer recirculation module.
- 5. MG2, MG3 and MGW14 are only supplied without outer recirculation module.
- 6. The end seal is optional for MGN3, and it's available for SS symbol.
- (2) Interchangeable type Interchangeable Block



Note: 1. The bottom seal is available for MGN & MGW 9, 12, 14, 15.

- 2. MG5 is only supplied with outer recirculation module.
- 3. No interchangeable offer of MG2 and MG3.
- 4. MGW14 is only supplied without outer recirculation module.
- 5. The available size for EL auxiliary lubrication module are, MGN7,9,12 & MGW9,12.

Interchangeable Rail

2-4-11 Types

(1) Block types

HIWIN offers two types of linear guideways, flange and square types.

Table 2-4-1 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	MGN-C MGN-H		3.2 ↓ 16	30 ↓ 2000	PrinterRoboticsPrecision measure equipmentSemiconductor
Flange	MGW-C MGW-H		4 ↓ 16	40 ↓ 2000	equipment

^{*}Please refer to the chapter 2-4-14 for the dimensional detail.

(2) Rail types

HIWIN offers standard top mounting and bottom mounting type.

Table 2-4-2 Rail Types

MG Series

Miniature Type

2-4-12 Accuracy Classes

The accuracy of MGN/MGW series can be classified into three classes: normal (C), high (H), precision (P). Choices for different accuracy classes are available according to various requirements.

C T A D N W

(1) Accuracy of non-interchangeable guideways

Table 2-4-3 Accuracy Standard of Non-interchangeable Type

Unit: mm

Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.04	± 0.02	± 0.01
Dimensional tolerance of width N	± 0.04	± 0.025	± 0.015
Pair Variation of height H	0.03	0.015	0.007
Pair Variation of width N (Master Rail)	0.03	0.02	0.01
Running parallelism of block surface C to surface A		See Table 2-4-5	
Running parallelism of block surface D to surface B		See Table 2-4-5	

(2) Accuracy of interchangeable guideways

Table 2-4-4 Accuracy Standard of Interchangeable Type

Unit: mm

Accuracy Classes		Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H		± 0.04	± 0.02	± 0.01
Dimensional tolerance of width N		± 0.04	± 0.025	± 0.015
One Set	Pair Variation of height H	0.03	0.015	0.007
one set	Pair Variation of width N	0.03	0.02	0.01
Pair Variat	ion of width N (Master Rail)	0.07	0.04	0.02
Running pa	arallelism of block surface C to surface A		See Table 2-4-5	
Running pa	arallelism of block surface D to surface B	See Table 2-4-5		

(3) Accuracy of running parallelism

The running parallelism C to A and D to B are related to the rail length.

Table 2-4-5 Accuracy of Running Parallelism

Rail Length	Accuracy (μι	m)		Rail Length	Accuracy (µr	m)	
(mm)	(C)	(H)	(P)	(mm)	(C)	(H)	(P)
~ 50	12	6	2	1,000 ~ 1,200	25	18	11
50 ~ 80	13	7	3	1,200 ~ 1,300	25	18	11
80 ~ 125	14	8	3.5	1,300 ~ 1,400	26	19	12
125 ~ 200	15	9	4	1,400 ~ 1,500	27	19	12
200 ~ 250	16	10	5	1,500 ~ 1,600	28	20	13
250 ~ 315	17	11	5	1,600 ~ 1,700	29	20	14
315 ~ 400	18	11	6	1,700 ~ 1,800	30	21	14
400 ~ 500	19	12	6	1,800 ~ 1,900	30	21	15
500 ~ 630	20	13	7	1,900 ~ 2,000	31	22	15
630 ~ 800	22	14	8	2,000 ~	31	22	16
800 ~ 1,000	23	16	9				

2-4-13 Preload

MGN/MGW series provides three different preload levels for various applications.

Table 2-4-6 Preload Classes

Class	Code	Preload	Accuracy
Light Clearance	ZF	Clearance 4~10µm	C
Very Light Preload	ZO	Clearance 0~3µm	C~P
Light Preload	Z1	0.02C	C~P

Note: "C" in column preload means basic dynamic load rating.

Stiffness performance

Stiffness depends on preload. The following table shows stiffness value of each size.

Table 2-4-7 Radial stiffness for MG Series

Load type	Series / Size	Stiffness (N/µm)		Series / Size	Stiffness (N/µm)	
Load type	Series / Size	Z0	Z1	Series / Size	Z0	Z1
	MGN5C-0	20	61	MGW5C-0	32	85
	MGN7C	26	73	MGW7C	44	112
Standard	MGN9C	38	102	MGW9C	62	140
	MGN12C	44	105	MGW12C	72	148
	MGN15C	58	126	MGW15C	85	154
	MGN5H-0	26	79	-	-	-
	MGN7H	42	122	MGW7H	64	168
Long	MGN9H	56	153	MGW9H	81	190
	MGN12H	70	175	MGW12H	102	217
	MGN15H	89	202	MGW15H	122	235

2-4-14 Dust Proof Accessories

End seals on both sides of the block can prevent dust from entering the block and maintain the accuracy and service life of a linear guideway. End seals for MGN3 are optional, customers can order it by adding the mark "+SS" followed by the model number. For other size of MG series, end seals are standard accessories. Bottom seals are fixed under the skirt portion of the block to prevent dust from entering. Customers can order bottom seals by adding the mark "+U" followed by the model number. Sizes 9, 12, 14 and 15 provide bottom seals as an option, but size 2, 3, 5, 7 do not offer the option due to the space limit of H_1 . Note that " H_1 " would reduced if bottom seals are attached, be aware of possible interference between block and mounting surface.

Table 2-4-8

Size	Bottom seal	H ₁ mm	Size	Bottom seal	H ₁ mm
MGN2	-	-	MGW2	-	-
MGN3	-	-	MGW3	-	-
MGN7	-	-	MGW7	-	-
MGN9	•	1	MGW9	•	1.9
MGN12	•	2	MGW12	•	2.4
-	-	-	MGW14	•	2.4
MGN15	•	3	MGW15	•	2.4
MGN5-0	-	-	MGW5-0	-	-
MGN7-0	-	-	MGW7-0	-	-
MGN9-0	•	1.2	MGW9-0	•	1.95
MGN12-0	•	2	MGW12-0	•	2.45
MGN15-0	•	3	MGW15-0	•	2.45

MG Series

Miniature Type

• Bolt caps for rail mounting holes

Rail mounting hole caps prevent foreign matter from accumulating in the mounting holes. Caps are included with the rail package.

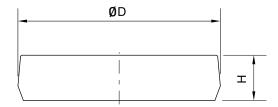


Table 2-4-9 Dimensions of Bolt Caps for Rail Mounting Holes

Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)
MGN12	M3	6.15	1.2
MGN15	M3	6.15	1.2
MGW12	M4	8.15	2.2
MGW14	M4	8.15	2.2
MGW15	M4	8.15	2.2

2-4-15 Mounting Surface Accuracy Tolerance

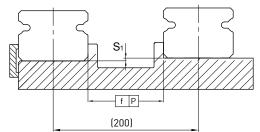


Table 2-4-10 Max. Parallelism Tolerance (P)

	:1		
un	ш.	ш	m

C:	Preload class	Preload classes			Preload classes		
Size	ZF	Z 0	Z1	Size	ZF	Z0	Z1
MG2	2	2	2	MG9	4	4	3
MG3	2	2	2	MG12	9	9	5
MG5	2	2	2	MG14	10	10	6
MG7	3	3	3	MG15	10	10	6

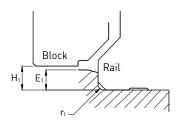
Table 2-4-11 Max. Tolerance of Reference Surface Height (S₁)

unit: µm

Size	Preload classes			Size	Preload classes		
	ZF	Z 0	Z1	3126	ZF	Z0	Z1
MG2	15	15	2	MG9	35	35	6
MG3	15	15	2	MG12	50	50	12
MG5	20	20	2	MG14	60	60	20
MG7	25	25	3	MG15	60	60	20

Table 2-4-12 Permissible Error of Mounting Surface

unit: mm


Size	Flatness of the Mounting Surface	Size	Flatness of the Mounting Surface
MG2	0.012/200	MG9	0.035/200
MG3	0.012/200	MG12	0.050/200
MG5	0.015/200	MG14	0.060/200
MG7	0.025/200	MG15	0.060/200

Note: The values above are suitable for preload of ZF/Z0. For preload of Z1 or using two(or more) rails on the same plane, 50% or less of the values above are recommended.

2-4-16 Cautions for Installation

(1) Shoulder heights and fillets

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

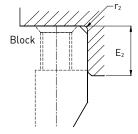


Table 2-4-13 Shoulder Heights and Fillets

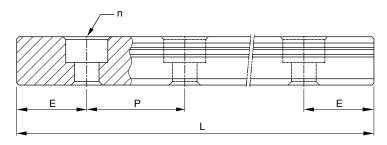
Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
MGN2	0.1	0.2	0.5	1.5	0.7
MGN3	0.1	0.2	0.6	1.5	1
MGN5	0.1	0.2	1.2	2	1.5
MGN7	0.2	0.2	1.2	3	1.5
MGN9	0.2	0.3	1.7	3	2
MGN12	0.3	0.4	1.7	4	3
MGN15	0.5	0.5	2.5	5	4
MGW2	0.1	0.2	0.6	1.5	1
MGW3	0.1	0.2	0.6	2	1
MGW5	0.1	0.2	1.2	2	1.5
MGW7	0.2	0.2	1.7	3	1.9
MGW9	0.3	0.3	2.5	3	2.9
MGW12	0.4	0.4	3	4	3.4
MGW14	0.4	0.4	3	5	3.5
MGW15	0.4	0.8	3	5	3.4

(2) Tightening torque of bolts for installation

Improper tightening of rail mounting bolts will seriously affect the accuracy of the linear guideway. The following table lists the recommended tightening torque for the specific bolt sizes.

Table 2-4-14 Tightening Torque

Size	Bolt size	Torque, N-cm (kgf-cm)				
3126	Dott Size	Iron	Casting	Aluminum		
MGN5	M2×0.4P×6L	57(5.9)	39.2(4)	29.4(3)		
MGN7	M2×0.4P×6L	57(5.9)	39.2(4)	29.4(3)		
MGN9	M3×0.5P×8L	186(19)	127(13)	98(10)		
MGN12	M3×0.5P×8L	186(19)	127(13)	98(10)		
MGN15	M3×0.5P×10L	186(19)	127(13)	98(10)		
MGW2	M1.6×0.35P×4.4L	27.6(2.8)	19(1.94)	14.2(1.45)		
MGW3	M2×0.4P×6L	57(5.9)	39.2(4)	29.4(3)		
MGW5	M2.5×0.45P×7L	118(12)	78.4(8)	58.8(6)		
MGW7	M3×0.5P×6L	186(19)	127(13)	98(10)		
MGW9	M3×0.5P×8L	186(19)	127(13)	98(10)		
MGW12	M4×0.7P×8L	392(40)	274(28)	206(21)		
MGW14	M4×0.7P×10L	392(40)	274(28)	206(21)		
MGW15	M4×0.7P×10L	392(40)	274(28)	206(21)		


Note : 1 kgf = 9.81 N

MG Series

Miniature Type

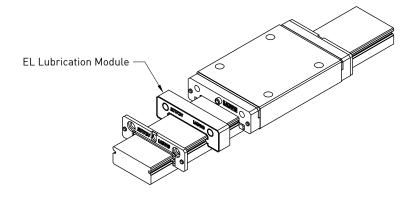
2-4-17 Standard and Maximum Lengths of Rail

HIWIN offers standard lengths of rail for fast shipping. For non-standard rail lengths, it's recommended that the E value is no greater than 1/2 of the pitch(P) to prevent instability at the end of the rail, and the E value should be no less than E-min to avoid a broken mounting hole.

 $L = (n-1) \times P + 2 \times E \qquad Eq. 2.4$

- L: Total length of rail (mm)
- n: Number of mounting holes
- P: Distance between any two holes (mm)
- E: Distance from the center of the last hole to the edge (mm)

Table 2-4-15 unit: mm


MGNR2	MGNR3	MGNR5	MGNR7	MGNR9	MGNR12	MGNR15	MGWR2	MGWR3	MGWR5	MGWR7	MGWR9	MGWR12	MGWR14	MGWR15
32(4)	30(3)	40(3)	40(3)	55(3)	70(3)	70(2)	40(4)	40(3)	50(3)	50(2)	80(3)	110(3)	110(3)	110(3)
40(5)	40(4)	55(4)	55(4)	75(4)	95(4)	110(3)	60(6)	55(4)	70(4)	80(3)	110(4)	150(4)	150(4)	150(4)
56(7)	50(5)	70(5)	70(5)	95(5)	120(5)	150(4)	70(7)	70(5)	90(5)	110(4)	140(5)	190(5)	190(5)	190(5)
80(10)	60(6)	100(7)	85(6)	115(6)	145(6)	190(5)	80(8)	100(7)	110(6)	140(5)	170(6)	230(6)	230(6)	230(6)
104(13)	80(8)	130(9)	100(7)	135(7)	170(7)	230(6)	100(10)	130(9)	130(7)	170(6)	200(7)	270(7)	270(7)	270(7)
	100(10)	160(11)	130(9)	155(8)	195(8)	270(7)		160(11)	150(8)	200(7)	230(8)	310(8)	310(8)	310(8)
				175(9)	220(9)	310(8)			170(9)	260(9)	260(9)	350(9)	350(9)	350(9)
				195(10)	245(10)	350(9)				290(10)	290(10)	390(10)	390(10)	390(10)
				275(14)	270(11)	390(10)					350(14)	430(11)	430(11)	430(11)
				375(19)	320(13)	430(11)					500(19)	510(13)	510(13)	510(13)
					370(15)	470(12)					710(24)	590(15)	590(15)	590(15)
					470(19)	550(14)					860(29)	750(19)	750(19)	750(19)
					570(23)	670(17)						910(23)	910(23)	910(23)
					695(28)	870(22)						1070(27)	1070(27)	1070(27)
8	10	15	15	20	25	40	10	15	20	30	30	40	40	40
4	5	5	5	7.5	10	15	5	5	5	10	10	15	15	15
248(31)	250(25)	250(17)	595(40)	1195(60)	1995(80)	1990(50)	250(25)	250(17)	250(13)	590(20)	1970(66)	1990(50)	1790(45)	1990(50)
250 ⁶	250 ⁶	250 ⁶	600	1200 ⁷	2000	2000	250 ⁶	250 ⁶	250 ⁶	600 ⁸	2000	2000	18005	2000
	32(4) 40(5) 56(7) 80(10) 104(13) 8 8 4 248(31)	32(4) 30(3) 40(5) 40(4) 56(7) 50(5) 80(10) 60(6) 104(13) 80(8) 100(10) 8 10 4 5 248(31) 250(25)	32(4) 30(3) 40(3) 40(5) 40(4) 55(4) 56(7) 50(5) 70(5) 80(10) 60(6) 100(7) 104(13) 80(8) 130(9) 100(10) 160(11) 8 10 15 4 5 5 248(31) 250(25) 250(17)	32(4) 30(3) 40(3) 40(3) 40(5) 40(4) 55(4) 55(4) 56(7) 50(5) 70(5) 70(5) 80(10) 60(6) 100(7) 85(6) 104(13) 80(8) 130(9) 100(7) 100(10) 160(11) 130(9) 8 10 15 15 4 5 5 5 248(31) 250(25) 250(17) 595(40)	32(4) 30(3) 40(3) 40(3) 55(3) 40(5) 40(4) 55(4) 55(4) 75(4) 56(7) 50(5) 70(5) 70(5) 95(5) 80(10) 60(6) 100(7) 85(6) 115(6) 104(13) 80(8) 130(9) 100(7) 135(7) 100(10) 160(11) 130(9) 155(8) 175(9) 195(10) 275(14) 375(19) 8 10 15 15 20 4 5 5 5 7.5 248(31) 250(25) 250(17) 595(40) 1195(60)	32(4) 30(3) 40(3) 40(3) 55(3) 70(3) 40(5) 40(4) 55(4) 55(4) 75(4) 95(4) 56(7) 50(5) 70(5) 70(5) 95(5) 120(5) 80(10) 60(6) 100(7) 85(6) 115(6) 145(6) 104(13) 80(8) 130(9) 100(7) 135(7) 170(7) 100(10) 160(11) 130(9) 155(8) 195(8) 175(9) 220(9) 175(9) 220(9) 195(10) 245(10) 275(14) 270(11) 375(19) 320(13) 370(15) 470(19) 570(23) 695(28) 8 10 15 15 20 25 4 5 5 5 7.5 10	32(4) 30(3) 40(3) 40(3) 55(3) 70(3) 70(2) 40(5) 40(4) 55(4) 55(4) 75(4) 95(4) 110(3) 56(7) 50(5) 70(5) 70(5) 95(5) 120(5) 150(4) 80(10) 60(6) 100(7) 85(6) 115(6) 145(6) 190(5) 104(13) 80(8) 130(9) 100(7) 135(7) 170(7) 230(6) 100(10) 160(11) 130(9) 155(8) 195(8) 270(7) 175(9) 220(9) 310(8) 195(10) 245(10) 350(9) 275(14) 270(11) 390(10) 375(19) 320(13) 430(11) 370(15) 470(12) 470(19) 550(14) 570(23) 670(17) 695(28) 870(22) 8 10 15 15 20 25 40 4 5 5 5 7.5 10 15	32(4) 30(3) 40(3) 40(3) 55(3) 70(3) 70(2) 40(4) 40(5) 40(4) 55(4) 55(4) 75(4) 95(4) 110(3) 60(6) 56(7) 50(5) 70(5) 70(5) 95(5) 120(5) 150(4) 70(7) 80(10) 60(6) 100(7) 85(6) 115(6) 145(6) 190(5) 80(8) 104(13) 80(8) 130(9) 100(7) 135(7) 170(7) 230(6) 100(10) 100(10) 160(11) 130(9) 155(8) 195(8) 270(7) 175(9) 220(9) 310(8) 195(10) 245(10) 350(9) 275(14) 270(11) 390(10) 375(19) 320(13) 430(11) 370(15) 470(12) 470(19) 550(14) 570(23) 670(17) 695(28) 870(22) 8 10 15 15 20 25 40 10 4 5 5 5 7.5 10 155(8) 1995(80) 1990(50) 250(25)	32(4) 30(3) 40(3) 40(3) 55(3) 70(3) 70(2) 40(4) 40(3) 40(5) 40(4) 55(4) 55(4) 75(4) 95(4) 110(3) 60(6) 55(4) 56(7) 50(5) 70(5) 70(5) 95(5) 120(5) 150(4) 70(7) 70(5) 80(10) 60(6) 100(7) 85(6) 115(6) 145(6) 190(5) 80(8) 100(7) 104(13) 80(8) 130(9) 100(7) 135(7) 170(7) 230(6) 100(10) 130(9) 100(10) 160(11) 130(9) 155(8) 195(8) 270(7) 160(11) 130(9) 175(9) 220(9) 310(8) 270(7) 160(11) 175(9) 220(9) 310(8) 160(11) 175(9) 220(9) 310(8) 160(11) 175(9) 220(9) 310(8) 175(11) 390(10) 375(19) 320(13) 430(11) 470(12) 470(12) 470(12) 470(12) 470(12) 570(23) 670(17) 695(28) 870(22) 88 10 15 5 5	32[4] 30[3] 40[3] 40[3] 55[3] 70[3] 70[2] 40[4] 40[3] 50[3] 40[5] 40[4] 55[4] 55[4] 75[4] 95[4] 110[3] 60[6] 55[4] 70[4] 56[7] 50[5] 70[5] 70[5] 95[5] 120[5] 150[4] 70[7] 70[5] 90[5] 80[10] 60[6] 100[7] 85[6] 115[6] 145[6] 190[5] 80[8] 100[7] 110[6] 104[13] 80[8] 130[9] 100[7] 135[7] 170[7] 230[6] 100[10] 130[9] 130[7] 100[10] 160[11] 130[9] 155[8] 195[8] 270[7] 160[10] 130[9] 130[7] 175[9] 220[9] 310[8] 70[7] 170[9] 175[9] 220[9] 310[8] 70[7] 70[9] 175[9] 220[9] 310[8] 70[7] 70[9] 175[9] 220[9] 310[8] 70[9] 70[9] 175[9] 320[13] 430[11] 70[9] 175[9] 320[13] 430[11] 70[9] 175[9] 320[13] 470[12] 70[9] 175[9] 550[14] 70[9] 70	32(4) 30(3) 40(3) 40(3) 55(3) 70(3) 70(2) 40(4) 40(3) 50(3) 50(2) 40(5) 40(4) 55(4) 55(4) 70(5) 70(5) 95(5) 120(5) 150(4) 70(7) 70(5) 90(5) 110(4) 56(7) 50(5) 70(5) 70(5) 95(5) 120(5) 150(4) 70(7) 70(5) 90(5) 110(4) 80(10) 60(6) 100(7) 85(6) 115(6) 145(6) 190(5) 80(8) 100(7) 110(6) 140(5) 104(13) 80(8) 130(9) 100(7) 135(7) 170(7) 230(6) 100(10) 130(9) 130(7) 170(6) 104(13) 80(8) 130(9) 155(8) 195(8) 270(7) 160(11) 150(8) 200(7) 100(10) 160(11) 130(9) 155(8) 195(8) 270(7) 160(11) 150(8) 200(7) 175(9) 220(9) 310(8) 170(9) 160(11) 150(8) 200(7) 195(10) 245(10) 350(9) 170(10) 170(9) 260(9) 195(10) 245(10) 350(9) 170(10) 170(9) 260(9) 195(10) 245(10) 350(9) 170(10) 170(9) 260(9) 195(10) 375(19) 320(13) 430(11) 170(9) 260(9) 195(10) 470(12) 470(12) 470(12) 170(11) 170(1	32(4) 30(3) 40(3) 40(3) 55(3) 70(3) 70(2) 40(4) 40(3) 50(3) 50(2) 80(3) 40(5) 40(4) 55(4) 55(4) 70(5) 70(5) 95(5) 120(5) 150(4) 70(7) 70(5) 90(5) 110(4) 140(5) 80(10) 60(6) 100(7) 85(6) 115(6) 145(6) 190(5) 80(8) 100(7) 110(6) 140(5) 170(6) 104(13) 80(8) 130(9) 100(7) 135(7) 170(7) 230(6) 100(10) 130(9) 130(7) 170(6) 200(7) 104(13) 80(8) 130(9) 160(11) 130(9) 155(8) 195(8) 270(7) 160(11) 150(8) 200(7) 230(8) 175(9) 220(9) 310(8) 170(1) 150(8) 200(7) 240(9) 260(9) 175(9) 220(9) 310(8) 170(1) 170(1) 150(8) 200(7) 290(10) 175(1) 245(10) 350(1) 170(1) 170(1) 170(1) 270(11) 170(1)	32(4) 30(3) 40(3) 40(3) 55(3) 70(3) 70(2) 40(4) 40(3) 50(3) 50(2) 80(3) 110(3) 40(5) 40(4) 55(4) 55(4) 75(4) 95(4) 110(3) 60(6) 55(4) 70(4) 80(3) 110(4) 150(4) 56(7) 50(5) 70(5) 70(5) 95(5) 120(5) 150(4) 70(7) 70(5) 90(5) 110(4) 140(5) 170(6) 230(6) 104(13) 80(8) 130(9) 100(7) 135(7) 170(7) 230(6) 100(10) 130(9) 130(7) 170(6) 200(7) 270(7) 100(10) 160(11) 130(9) 155(8) 175(9) 220(9) 310(8) 270(7) 150(8) 170(9) 260(9) 260(9) 350(9) 175(9) 175(9) 220(9) 310(8) 175(9) 220(9) 310(8) 170(9) 260(9) 260(9) 350(10) 170(6) 275(14) 170(6) 275(14) 170(6) 275(14) 170(6) 275(14) 170(14) 1	32(4) 30(3) 40(3) 55(4) 55(3) 70(3) 70(2) 40(4) 40(3) 50(3) 50(2) 80(3) 110(3) 110(3) 40(5) 40(4) 55(4) 55(4) 55(4) 75(4) 95(4) 110(3) 60(6) 55(4) 70(4) 80(3) 110(4) 150(4) 150(4) 56(7) 50(5) 70(5) 70(5) 95(5) 120(5) 150(4) 70(7) 70(5) 90(5) 110(4) 140(5) 170(6) 230(6) 230(6) 104(1) 80(8) 130(9) 100(7) 135(7) 170(7) 230(6) 104(13) 80(8) 130(9) 100(7) 135(7) 170(7) 230(6) 100(10) 130(9) 130(7) 170(6) 200(7) 270(7) 270(7) 100(10) 100(10) 160(11) 130(9) 155(8) 195(8) 270(7) 4 160(11) 150(8) 200(7) 230(8) 310(8) 310(8) 104(11) 150(8) 200(7) 230(8) 310(8) 310(8) 104(11) 150(8) 200(7) 230(8) 310(8) 108(8) 170(11) 150(8) 200(7) 230(8) 310(8) 108(8) 170(11) 150(8) 200(7) 230(8) 310(8) 108(8) 170(11) 150(8) 200(7) 230(8) 310(8) 108(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 108(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 108(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 110(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 110(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 110(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 110(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 110(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 110(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 110(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 110(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 170(11) 150(8) 170(11) 150(8) 200(7) 230(8) 310(8) 310(8) 170(11) 150(11) 15

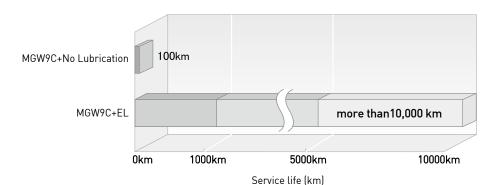
Note: 1. Tolerance of E value for standard rail is $0.5 \sim -0.5$ mm. Tolerance of E value for jointed rail is $0 \sim -0.3$ mm.

- 2. Maximum standard length indicates the max. rail length with standard E value on both sides.
- 3. Fixing screws for MGN5's mounting holes are appended.
- 4. If smaller E value is needed, please contact HIWIN.
- 5. MGWR14 is only supplied with carbon steel.
- 6. MGNR2, MGWR2, MGNR3, MGWR3, MGNR5, MGWR5 are only supplied with stainless steel.
- 7. MGNR9 of stainless steel is supplied with the maximum length of 1200mm; MGNR9 of carbon steel is supplied with the maximum length of 1000mm.
- 8. MGWR7 of stainless steel is supplied with the maximum length of 600mm; MGWR7 of carbon steel is supplied with the maximum length of 2000mm.

2-4-18 EL Auxiliary Lubrication Module

The EL Auxiliary Lubrication Module is an environment friendly lubrication system that can extend the maintenance life of HIWIN and quideways up to 10,000 km. The module is installed on either end of a quideway block and provides extended lubrication through a no-drip encapsulated material for a cleaner environmental solution.

(1) Feature

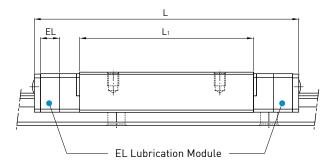

- 1. Extend maintenance period up to 10,000km
- 2. Contained lubrication fluid prevents spills
- 3. Direct lubrication in ball rolling raceway.
- 4. Compatible with most HIWIN guideways.
- 5. Conform to cleanroom class 1000 regulation.
 - Notes: 1. Service life will vary from application environment, lubrication conditions, and assembly accuracy.
 - 2. Not for use in high heat conditions greater than 50°C ,and if lower than 25°C please contact HIWIN.
 - 3. Standard parts must be pregreased with HIWIN G05. If there is no pregreasing, the maintenance mileage will be shortened.

(2) Applications

Broadly applicable in automation, conveying equipment, Industrial machine, Semi-conductor, and inspection machine.

(3) Lubrication Capability

High speed life testing with light load

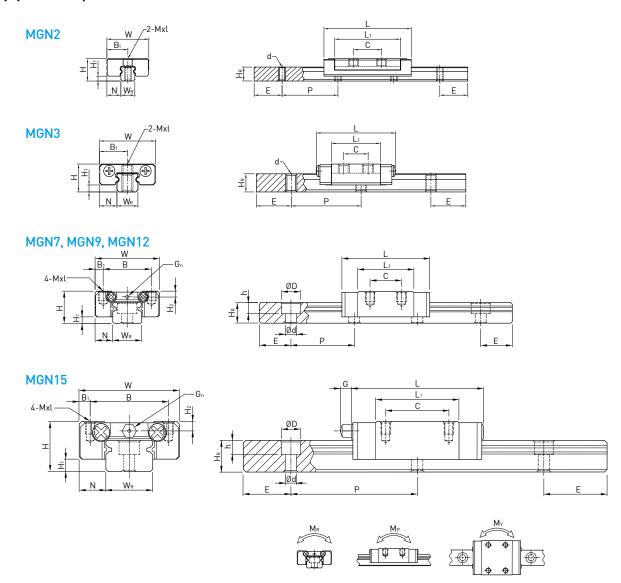


Test Specification	MGW9C1R1000Z0CM+EL
Velocity	5 m/s
Acceleration	50 m/s ²
Applied Load	0.2 kgf
Stroke	850 mm
Lubrication	Lithium Soap Grease+EL
Distance travel	10,000 km

MG Series

Miniature Type

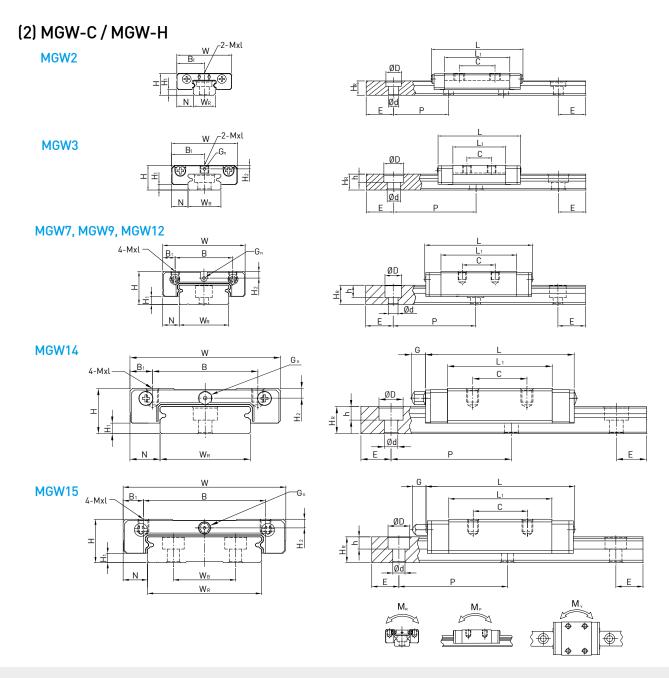
(4) Dimension Table for EL Type



unit:mm

Model No.	Lubrication device (R ₁)	Block length (L ₁)	Total length (L)
MGN7C	3.5	13.5	29.5
MGN7H	3.5	21.8	37.8
MGN9C	- 5	18.9	38.9
MGN9H	5	29.9	49.9
MGN12C	5	21.7	44.7
MGN12H	J	32.4	55.4
MGW9C	5	27.5	49.3
MGW9H	J	38.5	60.7
MGW12C	5	31.3	56.1
MGW12H	J	45.6	70.4

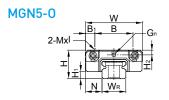
2-4-19 Dimensions for MGN/MGW Series

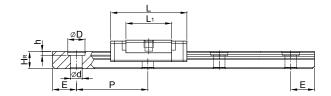

(1) MGN-C / MGN-H

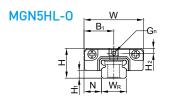
Model No.	of A	ensi ssen	nbly				Din	nensi	ons of	Bloc	k (mm	1		D	imer	nsior	ns of	Rail	. (mr	n)	Mounting Bolt for Rail	Load	Load	Moment			Weight	
																						Rating	Rating	IVIR	M_{P}	M_{γ}	Block	
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	G	G _n	Mxl	H ₂	\mathbf{W}_{R}	H _R	D	h	d	Р	Е	(mm)	C(kN)	C_0 (kN)	N-m	N-m	N-m	kg	kg/m
MGN 2C	3.2	0.7	2	6	-	3	4	9.5	12.5	-	-	M1.4 THRU	-	2	2	M.	1 THE	RU	8	4	M1	0.22	0.4	0.42	0.63	0.63	0.001	0.03
MGN 3C	4	1	2.5	8		4	3.5	7	11.3			M1.6x1.3		3	2.6	N/1	/ TII	וחוו	10	5	M1.6	0.29	0.44	0.7	0.5	0.5	0.001	0.05
MGN 3H	4	'	2.5	0	-	4	5.5	11	15.3	-	-	M2x1.3	-	3 Z	3 2.6 M1.6 THRU		IKU	10	o o	₩1.0	0.39	0.68	1.0	1.3	1.3	0.002	0.05	
MGN 7C	8	1.5	5	17	10	2.5	8	13.5	22.5		Ø1.2	M2x2.5	1.5	7	, 0	4.2	2.2	2.4	15	5	M2x6	0.98	1.24	4.70	2.84	2.84	0.010	0.22
MGN 7H	٥	1.5	J.	17	12	2.3	13	21.8	30.8	-	WI.Z	MZXZ.3	1.3	/	4.0	4.2	2.3	2.4	13	o o	MZXO	1.37	1.96	7.64	4.80	4.80	0.015	0.22
MGN 9C	10	2	5.5	20	10	2.5	10	18.9	28.9		Ø1.4	M3x3	1.8	9	6.5	,	2 5	3.5	20	7.5	M3x8	1.86	2.55	11.76	7.35	7.35	0.016	0.38
MGN 9H	10	Z	5.5	20	13	2.5	16	29.9	39.9	-	Ø1.4	M3X3	1.8	9	6.5	6	3.3	3.5	20	7.5	M3X8	2.55	4.02	19.60	18.62	18.62	0.026	0.38
MGN 12C	13	3	7.5	27	20	2.5	15	21.7	34.7		ďΩ	M3x3.5	2.5	10	8	,	, ,	2.5	25	10	M3x8	2.84	3.92	25.48	13.72	13.72	0.034	
MGN 12H	13	3	7.5	21	20	3.5	20	32.4	45.4	-	Ø2	M3X3.3	2.5	12	8	3 6	4.5 3.5	25	10	M3X8	3.72	5.88	38.22	36.26	36.26	0.054	0.65	
MGN 15C	16	,	٥٢	22	25	2.5	20	26.7	42.1	4.5	М3	M2/	3	15	10	,	, ,	٥٢	/0	15	M210	4.61	5.59	45.08	21.56	21.56	0.059	1.07
MGN 15H	16	4	8.5	32	25	3.5	25	43.4	58.8	4.5	M3	M3x4	3	15	10	6	4.5	3.5	40	15	M3x10	6.37	9.11	73.50	57.82	57.82	0.092	1.06

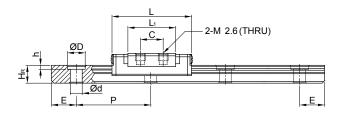
Note : 1. 1 kgf = 9.81N

 $^{2.\} MG{3}\ blocks\ should\ not\ be\ removed\ from\ the\ rail.\ If\ removing\ the\ blocks\ is\ necessary,\ the\ blocks\ should\ be\ kept\ on\ the\ block\ inserts.$

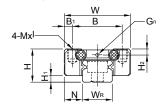


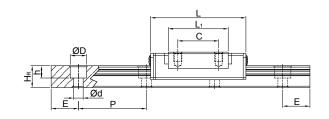

Model No.	of A	ensi ssen	nbly				Dim	ensio	ns of	Bloc	k (mr	n)			Dim	iens	ons	of R	ail (r	nm)		Mounting Bolt for Rail	Load	Load	Static Rated Moment			Weight	
																						ituit	Rating	Rating	M_R	M_{P}	M_{γ}	Block	Rail
	Н	H_1	N	W	В	B_1	С	L	L	G	G_n	Mxl	H_2	\mathbf{W}_{R}	W_{B}	H_{R}	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	N-m	N-m	N-m	kg	kg/m
MGW 2C	4	1	3	10	-	5	6.5	11.9	16.7	-	-	M2x1.3	-	4	-	2.6	2.8	1	1.8	10	5	M1.6	0.41	0.73	1.1	2.2	2.2	0.002	0.07
MGW 3C	4.5	1	3	12			4.5	9.6	15		Ø0 E	M2-THRU	0.45	6		2.9	2 4	1.5	2 /	15	5	M2	0.54	0.84	2.3	1.3	1.3	0.003	0.13
MGW 3H	4.5	'	3	12	-	0	8	14.2	19.6	-	ψυ.3	MIZ-I TINU	0.00	0	-	2.7	3.0	1.5	2.4	13	J	IVIZ	0.68	1.18	3.3	2.7	2.7	0.004	0.13
MGW 7C	9	1.9	5.5	25	19	3	10	21	31.2		Ø1.2	M3x3	1.85	1.6		5.2	6	3.2	2.5	30	10	M3x6	1.37	2.06	15.70	7.14	7.14	0.020	0.51
MGW 7H	7	1.7	5.5	23	17	3	19	30.8	41	-	WI.Z	MOXO	1.00	14	-	J.Z	0	3.2	3.3	30	10	MISKO	1.77	3.14	23.45	15.53	15.53	0.029	0.31
MGW 9C	12	2.9	6	30	21	4.5	12	27.5	39.3		Ø1.2	M3x3	2.4	18		7	6	4.5	3 5	30	10	M3x8	2.75	4.12	40.12	18.96	18.96	0.040	0.91
MGW 9H	12	2.7	Ü	30	23	3.5	24	38.5	50.7	_	V1.Z	MOXO	2.4	10	-	,	O	4.5	5.5	30	10	MISKO	3.43	5.89	54.54	34.00	34.00	0.057	0.71
MGW 12C	1,6	3.4	8	40	28	6	15	31.3	46.1		Ø1.2	M3x3.6	2.8	24	_	8.5	8	4.5	4.5	40	15	M4x8	3.92	5.59	70.34	27.80	27.80	0.071	1.49
MGW 12H	14	3.4	0	40	20	0	28	45.6	60.4	Ī	WI.Z	M3X3.0	2.0	24	-	0.5	0	4.5	4.5	40	13	14140	5.10	8.24	102.70	57.37	57.37	0.103	1.47
MGW 14C	15	3.5	10	50	35	7.5	18	34.8	49.4	4.7	М3	M4x4.5	3.2	30		9	8	4.5	4.5	40	15	M4	5.90	8.44	116.96	48.91	48.91	0.110	1.98
MGW 14H	10	3.5	10	50	30	7.3	35	53	67.6	4.7	IVIO	1414¥.3	3.2	30	_	7	0	4.5	4.0	40	13	1414	7.70	12.33	170.94	102.12	102.12	0.162	1.70
MGW 15C	14	3.4	9	60	45	7.5	20	38	54.8	5.2	М3	M4x4.2	3.2	42	23	9.5	8	4.5	4.5	40	15	M4x10	6.77	9.22	199.34	56.66	56.66	0.143	2.86
MGW 15H	10	3.4	7	00	45	7.5	35	57	73.8	J.Z	IVIO	141414.∠	3.2	42	23	7.3	0	4.5	4.0	40	13	IVI4X I U	8.93	13.38	299.01	122.60	122.60	0.215	2.00

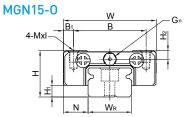

Note : 1. 1 kgf = 9.81N

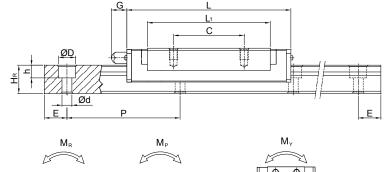

^{2.} MG2 and MG3 blocks should not be removed from the rail. If removing the blocks is necessary, the blocks should be kept on the block inserts.

(3) MGN-C-O / MGN-H-O

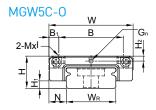


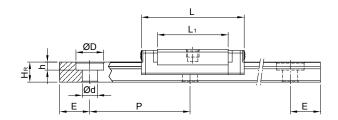


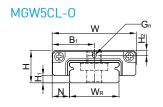


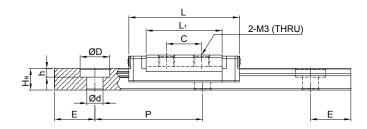


MGN7-0, MGN9-0, MGN12-0

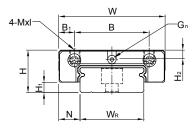


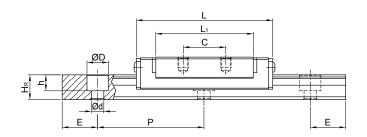


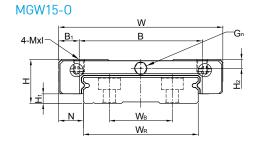

Note : 1 kgf = 9.81 N

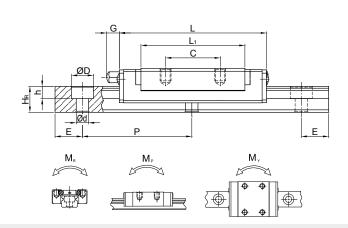

92 **HIWIN** G99TE23-2203

(4) MGW-C-0 / MGW-H-0





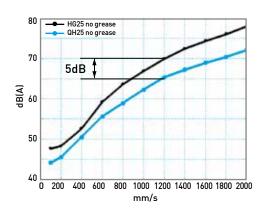


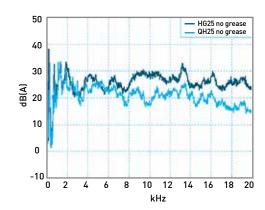


MGW7-0, MGW9-0, MGW12-0

Model No.	of A	nensi Issem	nbly				Dim	nensi	ons of	Blo	ck (mi	m)			Dim	ensi	ons	of R	ail (n	nm)		Mounting Bolt for Rail	Basic Dynamic Load	Basic Static Load	Moment d			Weight	
		(111111)																				Kait	Rating	Rating	M_R	M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L	L	G	G _n	Mxl	H ₂	\mathbf{W}_{R}	W_{B}	H_{R}	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	N-m	N-m	N-m	kg	kg/m
MGW 5C-0	/ =	1.5	2 5	17	13	2	-	14.1	20.5		Ø0.8	M2.5x1.5	1	10		,	5.5	1.6	3	20	5	M2.5X7	0.68	1.18	5.5	2.7	2.7	0.006	0.34
MGW 5CL-0	0.0	1.5	3.5	17	-	8.5	6.5	14.1	20.5	-	ס.טע	M3-THRU	<u>'</u>	10	-	4	5.5	1.0	J	20	j)	MZ.3A7	0.68	1.18	5.5	2.7	2.7	0.006	0.34
MGW 7C-0	0	1.9		25	19	3	10	21	31.2		Ø1.2	М3х3	1.85	14		5.2	,	2.2	2 E	30	10	M3×6	1.37	2.06	15.70	7.14	7.14	0.018	0.51
MGW 7H-0	7	1.7	5.5	20	19	3	19	30.8	41	-	W1.Z	М3х3	1.00	14	-	5.2	6	3.2	3.0	30	10	MOXO	1.77	3.14	23.45	15.53	15.53	0.026	0.51
MGW 9C-0	12	2.95	6	30	21	4.5	12	27.5	39.7		Ø1.2	М3х3	2.65	18		7	6	4.5	2.5	30	10	M3x8	2.75	4.12	40.12	18.96	18.96	0.038	0.91
MGW 9H-0	12	2.73	0	30	23	3.5	24	38.5	50.7	-	W1.Z	M3x3	2.00	10	-	,	0	4.5	3.0	30	10	MOXO	3.43	5.89	54.54	34.00	34.00	0.053	0.71
MGW 12C-0	1/	3.45	8	40	28	6	15	31.3	45.1		Ø1.2	M3x3.6	2.8	24		8.5	8	4.5	/ E	40	15	M4x8	3.92	5.59	70.34	27.8	27.8	0.066	1.49
MGW 12H-0	14	3.43	0	40	28	6	28	45.6	59.4	-	עו.ע	M3x3.6	2.0	24	-	0.0	0	4.5	4.5	40	10	M4X0	5.1	8.24	102.7	57.37	57.37	0.093	1.47
MGW 15C-0	1/	3.45	9	60	45	7.5	20	38	53.8	5.2	М3	M4×4.2	3.2	42	23	9.5	8	4.5	/ E	40	15	M4×10	6.77	9.22	199.34	56.66	56.66	0.138	2.86
MGW 15H-0	16	3.45	7	00	45	7.5	35	57	72.8	J.Z	IVI3	M4×4.2	3.2	42	23	7.5	ď	4.5	4.5	40	13	IVI4×IU	8.93	13.38	299.01	122.60	122.60	0.200	2.86

Note : 1 kgf = 9.81 N

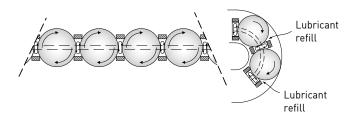

2-5 QH Series – Heavy Load Type Linear Guideway, with SynchMotion® Technology


The development of QH linear guideway is based on a four-row circular-arc contact. The QH series linear guideway with SynchMotion® Technology offers smooth movement, superior lubrication, quieter operation and longer running life. Therefore the QH linear guideway has broad industrial applicability. In the high-tech industry where high speed, low noise, and reduced dust generation is required, the HIWIN-QH series is interchangeable with the HG series.

2-5-1 Features

(1) Low Noise Design

With SynchMotion® technology, rolling elements are interposed between the partitions of SynchMotion® to provide impoved circulation. Due to the elimination of contact between the rolling elements, noise levels due to collision are drastically reduced.



(2) Self-Lubricant Design

The partition is a grouping of hollow ring-like structures formed with a through-hole to facilitate circulation of the lubricant. Because of the special lubrication path design, the lubricant of the partition storage space can be refilled. Therefore, the frequency of lubricant refilling can be decreased.

The QH-series linear guideway is pre-lubricated. Performance testing at a 0.2C (basic dynamic load) shows that after running 4,000km no damage was apparent to either the rolling elements or the raceway.

QH Series

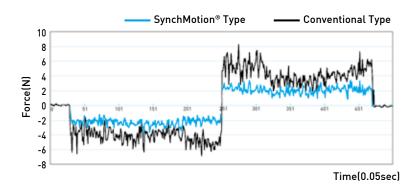

Heavy Load Type

Table 2-5-1 Load Test

Test Sample	QHH25CAZAH	Load Test
Speed	24m/min	
Lubricant	lithium soap base grease (initial lubrication only)	CHENCHE
Load	5kN	
Distance travel	4,000km	Load=5kN After 4,000km

(3) Smooth Movement

In standard linear guideways, rolling elements on the load side of the guide block begin rolling and push their way through the raceway. When they contact other rolling elements they create counter-rotational friction. This results in a great variation of rolling resistance. The QH linear guideway, with SynchMotion® technology prevents this condition. As the block starts to move, the rolling elements begin rolling consecutively and remain separated to prevent contact with one another thus keeping the element's kinetic energy extremely stable in order to effectively reduce fluctuations in rolling resistance.

(4) High Speed Performance

The QH series offers excellent high-speed performance due to the partitions of the SynchMotion® structure. They are employed to separate the adjacent balls thereby resulting in low rolling traction and the metallic friction between adjacent balls is eliminated.

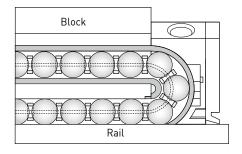
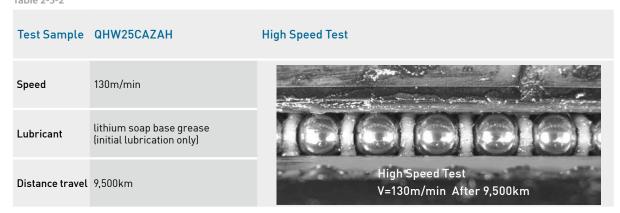
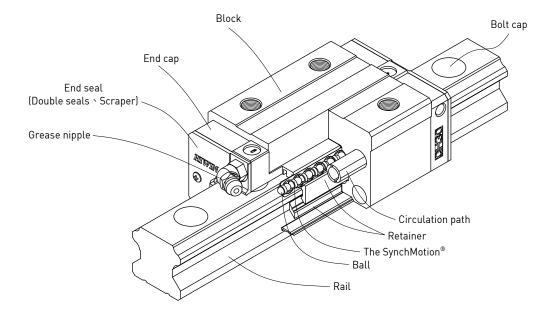




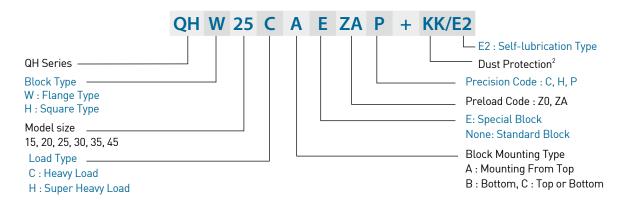
Table 2-5-2

2-5-2 Construction

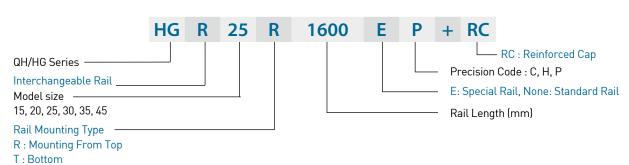
2-5-3 Model Number of QH Series

QH series guideway can be classified into non-interchangeable and interchangeable types. The sizes are identical. The main difference is that the interchangeable blocks and rails can be freely exchanged. Because of dimensional control, the interchangeable type linear guideway is a perfect choice for the client when rails do not need to be paired for an axis. And since the QH and HG share the identical rails, the customer does not need to redesign when choosing the QH series. Therefore the QH linear guideway has increased applicability.

QH Series


Heavy Load Type

(1) Non-interchangeable type



(2) Interchangeable type

Model Number of QH Block

Model Number of QH Rail (QH and HG share the identical rails)

2-5-4 Types

(1) Block types

HIWIN offers two types of linear guideways, flange and square types.

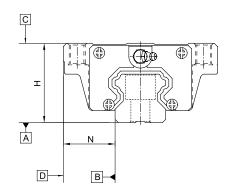
Table 2-5-3 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	QHH-CA QHH-HA		28 ↓ 70	100 ↓ 4000	 Automation devices High-speed transportation equipment Precision measuring equipment Semiconductor
	QHW-CA QHW-HA		24 ↓ 60	100 ↓ 4000	manufacturing equipment
Flange	QHW-CB QHW-HB		24 ↓ 60	100 ↓ 4000	
	QНW-СС QНW-НС		24 ↓ 60	100 ↓ 4000	

(2) Rail types

Besides the standard top mounting type, the bottom mounting type is also available.

Table 2-5-4 Rail Types



QH Series

Heavy Load Type

2-5-5 Accuracy Classes

The accuracy of QH series can be classified into normal (C), high (H), precision (P), super precision (SP), ultra precision (UP), five classes. Please choose the class by referring the accuracy of applied equipment.

(1) Accuracy of non-interchangeable

Table 2-5-5 Accuracy Standards

Unit: mm

Item	QH - 15, 20				
Accuracy Classes	Normal (c)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Dimensional tolerance of width N	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Variation of height H	0.02	0.01	0.006	0.004	0.003
Variation of width N	0.02	0.01	0.006	0.004	0.003
Running parallelism of block surface C to surface A			See Table 2-5-	11	
Running parallelism of block surface D to surface B			See Table 2-5-	11	

Table 2-5-6 Accuracy Standards

Unit: mm

Item	QH - 25, 30,	35			
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.02	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A			See Table 2-5-	11	
Running parallelism of block surface D to surface B			See Table 2-5-	11	

Table 2-5-7 Accuracy Standards

Unit: mm

Item	QH - 45				
Accuracy Classes	Normal (c)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Dimensional tolerance of width N	± 0.1	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Variation of height H	0.03	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.02	0.01	0.007	0.005
Running parallelism of block surface C to surface A			See Table 2-5-	11	
Running parallelism of block surface D to surface B			See Table 2-5-	11	

(2) Accuracy of interchangeable

Table 2-5-8	Accuracy	, Standards
1 able 2-3-0	Accuracy	Juanuanus

Item	QH - 15, 20		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.03	± 0.015
Dimensional tolerance of width N	± 0.1	± 0.03	± 0.015
Variation of height H	0.02	0.01	0.006
Variation of width N	0.02	0.01	0.006
Running parallelism of block surface C to surface A	See Table 2-5-11		

See Table 2-5-11

Table 2-5-9 Accuracy Standards

Running parallelism of block surface D to surface B

Unit: mm

Unit: mm

Table 2-3-9 Accuracy Standards			Onit. min
Item	QH - 25, 30, 35		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.1	± 0.04	± 0.02
Variation of height H	0.02	0.015	0.007
Variation of width N	0.03	0.015	0.007
Running parallelism of block surface C to surface A	See Table 2-5-11		
Running parallelism of block surface D to surface B	See Table 2-5-11		

Table 2-5-10 Accuracy Standards

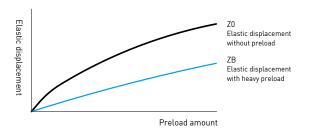
Unit: mm

Item	QH - 45		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.05	± 0.025
Dimensional tolerance of width N	± 0.1	± 0.05	± 0.025
Variation of height H	0.03	0.015	0.007
Variation of width N	0.03	0.02	0.01
Running parallelism of block surface C to surface A		See Table 2-5-11	
Running parallelism of block surface D to surface B $$		See Table 2-5-11	

QH Series

Heavy Load Type

(3) Accuracy of running parallelism


Table 2-5-11 Accuracy of Running Parallelism

Rail Length (mm)	Accuracy (µm)				
,	С	Н	P	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7

2-5-6 Preload

(1) Definition

A preload can be applied to each guideway. Oversized balls are used. Generally, a linear motion guideway has a negative clearance between groove and balls in order to improve stiffness and maintain high precision. The figure shows the load is multiplied by the preload, the rigidity is doubled and the deflection is reduced by one half. The preload no larger than ZA would be recommended for the model size under QH20 to avoid an over-preload affecting the guideway's life.

(2) Preload classes

HIWIN offers three classes of standard preload for various applications and conditions.

Table 2-5-12 Preload Classes

Class	Code	Preload	Condition	Examples of Application
Light Preload	ZO	0~ 0.02C	Certain load direction,low impact, low precision required	Transportation devices, auto-packing machines, X-Y axis for general industrial machines, welding machines, welders
Medium Preload	ZA	0.05C~0.07C	High precision required	Machining centers, Z axis for general industrial, machines, EDM, NC lathes, Precision X-Y tables, measuring equipment
Heavy Preload	ZB	0.10C~ 0.12C	High rigidity required, with vibration and impact	Machining centers, grinding machines, NC lathes, horizontal and vertical milling machines, Z axis of machine tools, Heavy cutting machines
Class	Interchangeable Guideway		deway	Non-Interchangeable Guideway
Preload classes	ZO, ZA			Z0, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

2-5-7 Mounting location

The standard location of the grease fitting is at both ends of the block, but the nipple can be mounted at each side of block. For lateral installation, we recommend that the nipple be mounted at the non-reference side, otherwise please contact us. It is possible to perform lubrication by using the oil-piping joint.

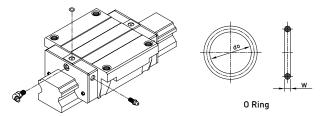
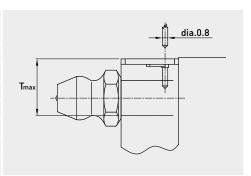
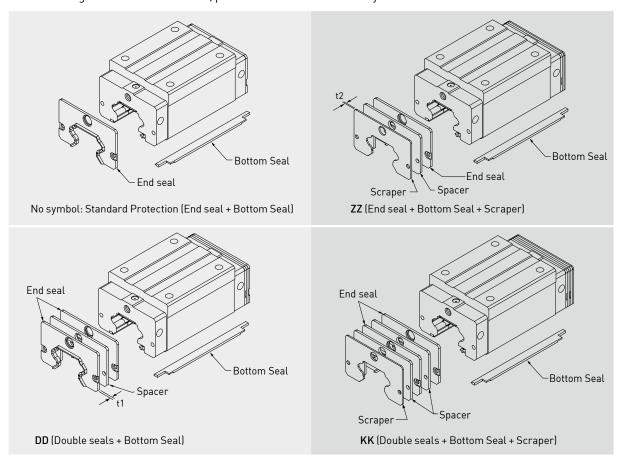



Table 2-5-13 O-Ring size and max. permissible depth for piercing


Size	O-Ring		Lube hole at top: max. permissible depth for piercing
	do (mm)	W (mm)	T _{max} (mm)
QH 15	3±0.15	1±0.15	3.75
QH 20	4.5±0.15	1.5±0.15	5.7
QH 25	4.5±0.15	1.5±0.15	5.8
QH 30	4.5±0.15	1.5±0.15	6.3
QH 35	4.5±0.15	1.5±0.15	8
QH 45	4.5±0.15	1.5±0.15	8.2

2-5-8 Dust Proof Accessories

(1) Codes of accessories

If the following accessories are needed, please add the code followed by the model number.

QH Series

Heavy Load Type

(2) End seal and bottom seal

To prevent life reduction caused by iron chips or dust entering the block.

(3) Double seals

Enhances the wiping effect, foreign matter can be completely wiped off.

Table 2-5-14 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
QH15 ES	3	QH30 ES	3.2
QH20 ES	2.5	QH35 ES	2.5
QH25 ES	2.5	QH45 ES	3.6

(4) Scraper

The scraper removes high-temperature iron chips and larger foreign objects.

Table 2-5-15 Dimensions of scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
QH15 SC	1.5	QH30 SC	1.5
QH20 SC	1.5	QH35 SC	1.5
QH25 SC	1.5	QH45 SC	1.5

(5) Dimensions of block equipped with the dustproof parts

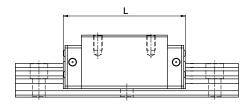


Table 2-5-16 Overall block length

unit: mm

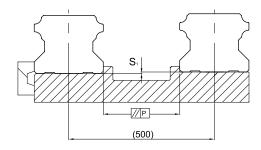
Size	Overall block length (L)				
5126	SS	ZZ	DD	KK	
QH15C	61.4 (61.8)	68.4 (69.4)	68.0 (68.4)	75.0 (76.0)	
QH20C	76.7 (78.9)	81.9 (84.5)	81.7 (83.9)	86.9 (89.5)	
QH20H	91.4 (93.6)	96.6 (99.2)	96.4 (98.6)	101.6 (104.2)	
QH25C	83.4 (86.0)	89.4 (92.0)	88.4 (91.0)	94.4 (97.0)	
QH25H	104.0 (106.6)	110.0 (112.6)	109.0 (111.6)	115.0 (117.6)	
QH30C	97.4 (99.4)	104.8 (107.4)	104.8 (106.8)	112.2 (114.8)	
QH30H	120.4 (122.4)	127.8 (130.4)	127.8 (129.8)	135.2 (137.8)	
QH35C	113.6 (114.4)	119.0 (120.0)	118.6 (119.4)	124.0 (125.0)	
QH35H	139.4 (140.2)	144.8 (145.8)	144.4 (145.2)	149.8 (150.8)	
QH45C	139.4 (139.4)	147.2 (147.2)	146.6 (146.6)	154.4 (154.4)	
QH45H	171.2 (171.2)	179.0 (179.0)	178.4 (178.4)	186.2 (186.2)	

Note: The marking of "[]" denotes the maximum block length with screws, lips of end seals, etc.

2-5-9 Friction

The maximum value of seal resistance per block are shown in the table.

Table 2-5-17 Seal Resistance


Size	Resistance N (kgf)
QH15	1.2 (0.12)
QH20	1.6 (0.16)
QH25	2.0 (0.2)
QH30	2.7 (0.27)
QH35	3.1 (0.31)
QH45	5.3 (0.53)

2-5-10 The Accuracy Tolerance of Mounting Surface

(1) The accuracy tolerance of rail-mounting surface

Because of the Circular-arc contact design, the QH linear guideway can compensate for some surface-error on installation and still maintain smooth linear motion.

As long as the accuracy requirements for the mounting surface are followed, high accuracy and rigidity of linear motion of the guideway can be obtained without any difficulty. In order to satisfy the needs of fast installation and smooth movement, HIWIN offers the normal clearance type of preload to customers of its high absorption ability of the deviation in mounting surface accuracy.

(2) The parallelism tolerance of reference surface

Table 2-5-18 Max. Parallelism Tolerance (P)

unit: µm

C:	Preload classes	Preload classes			
Size	ZO	ZA	ZB		
QH15	25	18	-		
QH20	25	20	18		
QH25	30	22	20		
QH30	40	30	27		
QH35	50	35	30		
QH45	60	40	35		

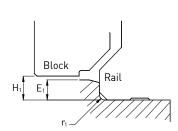
(3) The accuracy tolerance of reference surface height

Table 2-5-19 Max. Tolerance of Reference Surface Height (S₁)

unit: µm

Table 2.5 15 Max. Tolerance of McTelence Surface Height (51)				
Size	Preload classes			
	Z0	ZA	ZB	
QH15	130	85	-	
QH20	130	85	50	
QH25	130	85	70	
QH30	170	110	90	
QH35	210	150	120	
QH45	250	170	140	

Note: Tolerance is proportional to distance of two rails.


QH Series

Heavy Load Type

2-5-11 Cautions for Installation

(1) Shoulder heights and fillets

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

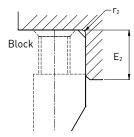
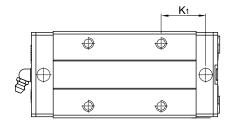
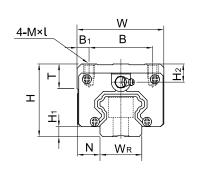


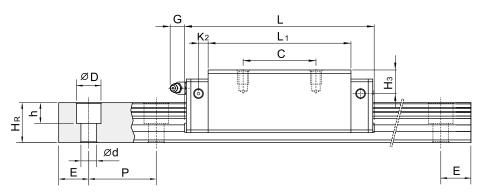
Table 2-5-20 Shoulder Heights and Fillets

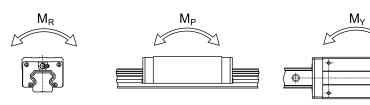
Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)			
QH15	0.5	0.5	3.0	4.0	4.0			
QH20	0.5	0.5	3.5	5.0	4.6			
QH25	1.0	1.0	5.0	5.0	5.5			
QH30	1.0	1.0	5.0	5.0	6.0			
QH35	1.0	1.0	6.0	6.0	7.5			
QH45	1.0	1.0	8.0	8.0	9.2			

(2) Tightening Torque of Bolts for Installation

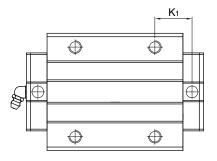

Improper tightening of bolts will seriously influence the accuracy of Linear Guideway installation. The following tightening torques for different sizes of bolts are recommended.

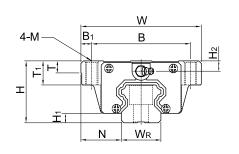

Table 2-5-21 Mounting Torque

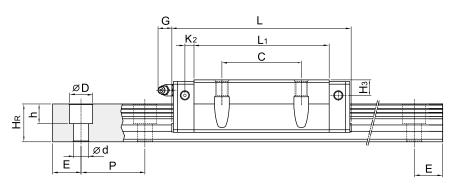

	• •											
Size	Bolt size	Torque N-cm(kgf-cm)										
Size	Dott Size	Iron	Casting	Aluminum								
QH15	M4×0.7P×16L	392 (40)	274 (28)	206 (21)								
QH20	M5×0.8P×16L	883 (90)	588 (60)	441 (50)								
QH25	M6×1P×20L	1373 (140)	921 (94)	686 (70)								
QH30	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)								
QH35	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)								
QH45	M12×1.75P×35L	11772 (1200)	7840 (800)	5880 (600)								

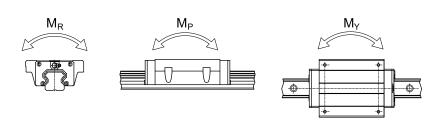

Note : 1 kgf = 9.81 N

2-5-12 Dimensions for HIWIN QH Series (1) QHH-CA / QHH-HA

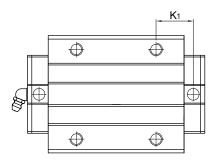

		Dimensions of Block (mm)											Dimensions of Rail (mm)							Mounting Bolt for Rail	Basic Dynamic Load	Load	Sta I	Weight								
Model No.		(mm																				Rating	Rating	M_R	M _P	M_{Y}	Block	Rail				
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	H _R	D	h	d	Р	Е	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/n	
QHH15CA	28	4	9.5	34	26	4	26	39.4	61.4	10	5	5.3	M4 x 5	6	7.95	8.2	15	15	7.5	5.3	4.5	60	20	M4x16	17.94	19.86	0.10	0.08	0.08	0.18	1.45	
QHH20CA		, ,	40	,,	00		36	50.5	76.7	11.75	6 12	10				6	20	0 17.5	9.5	٥.	,		00		30.0	33.86	0.26	0.19	0.19	0.29		
QHH20HA		4.6	12	44	32	2 6		65.2	91.4	12.1		12	2 M5 x 6	8	6					8.5	6	60 2	20	M5x16	35.7	42.31	0.31	0.27	0.27	0.38	2.21	
QHH25CA			10.5	5 48 35 6.		35 58	58	83.4	15.7	,	10		8	10	9	00	20		9	_		00		41.9	48.75	0.39	0.31	0.31	0.50			
QHH25HA	40	5.5	12.5		6.5		78.6			6	12	M6 x8				23	22	11		/	60	20	M6x20	50.61	60.94	0.50	0.45	0.45	0.68	3.21		
QHH30CA								70																	58.26	66.34	0.60	0.5	0.50	0.87		
QHH30HA		6	16	60	40				120.4 21.75		6.25	12	M8x10	8.5	9.5	9	28	26	14	12	9	80	20	M8x25	70.32	88.45	0.83	0.89	0.89	1.15	4.47	
QHH35CA			10				10		80			7.5	10	140 40	10.0	45.5	10.5	0.4	00	1.	10	0	00	00	MO 05	78.89	86.66	1.07	0.76	0.76	1.44	
QHH35HA		7.5 18 7	70	50	10	72 10	105.8			7.5	12	M8x12	10.2 1	15.5	13.5	34	29	14	12	9	80	20	M8x25	95.23	115.55	1.45	1.33	1.33	1.90	6.30		
QHH45CA		0.5	00.5	0.1	,,			97		23	40		1440 47	.,	40.5					45		105	00.5		119.4	135.42	1.83	1.38	1.38	2.72		
QHH45HA		9.2	20.5	86	60	00 13		128.8			10	12.9	≀M10x17	16 1	18.5	20	45	38	20 1	17	14	14 105	105 22.5	5 M12×35	144.13	180.56	2.47	2.41	2.41	3.59	10.41	

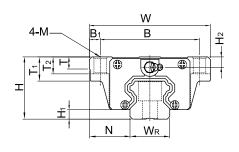

Note : 1 kgf = 9.81 N

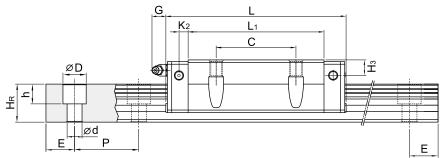

QH Series

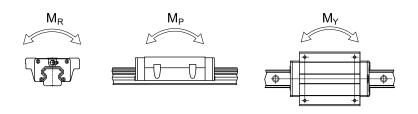

Heavy Load Type

(2) QHW-CA / QHW-HA

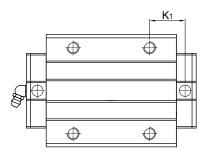


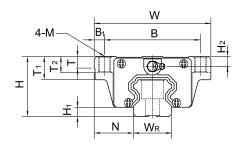


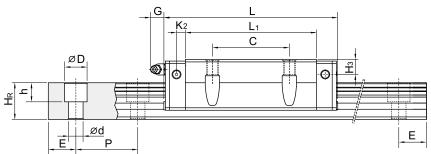


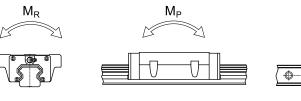

	Dimensior of Assemb odel No. (mm)							Dii	mensi	ons of	Bloo	ck (n	nm)					Dimensions of Rail (mm						m)	Rail LC				ntic Rat Iomen	ed t	We	ight
Model No.																										Rating	Rating	M_R	M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	W _R	H_R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
QHW15CA	24	4	16	47	38	4.5	30	39.4	61.4	8	5	5.3	M5	6	8.9	3.95	4.2	15	15	7.5	5.3	4.5	60	20	M4x16	17.94	19.86	0.1	0.08	0.08	0.17	1.45
QHW20CA											,	10	147	0	10	,	,	00	40.5	٥٢	٥.	,		00	NE 47	30.0	33.86	0.26	0.19	0.19	0.40	2.21
QHW20HA			21.5	63	53	5			91.4			12	M6	8	10	6	6	20	17.5	9.5	8.5	6	60	20	M5x16	35.7	42.31	0.31	0.27	0.27	0.52	2.21
QHW25CA									83.4		,	10		_	.,	,	_	00	00		•	_		0.0		41.9	48.75	0.39	0.31	0.31	0.59	0.04
QHW25HA		5.5	23.5	70	57	6.5	45		104		6	12	M8	8	14	6	5	23	22	11	9	7	60	20	M6x20	50.61	60.94	0.5	0.45	0.45	0.80	3.21
QHW30CA		,	0.4	00		•			97.4		, 05	10		٥.	.,	, -	,	00	0.4	4.	40	•	00		140.05	58.26	66.34	0.6	0.5	0.5	1.09	
QHW30HA			31	90	72	9	52		120.4			12	MIU	8.5	16	6.5	6	28	26	14	12	9	80	20	M8x25	70.32	88.45	0.83	0.89	0.89	1.44	4.47
QHW35CA		7.5	00	100	00	•	/0	80	113.6	13		10	1410	10.1	10	٥٦	, -	0.4	00	1/	10	0	00	00	MO 05	78.89	86.66	1.07	0.76	0.76	1.56	/ 00
QHW35HA									139.4		7.5	12	MIU	10.1	18	8.5	6.5	34	29	14	12	9	80	20	M8x25	95.23	115.55	1.45	1.33	1.33	2.06	6.30
QHW45CA		0.5	0.5	100	400	46			139.4		10	40.5		45.	0.5	0.5	40		0.0		45	4.	405	00.5		119.4	135.42	1.83	1.38	1.38	2.79	40.41
QHW45HA									171.2		10	12.9	M12	15.1	22	8.5	10	45	38	20	17	14	105	22.5	M12x35		180.56			2.41	3.69	10.41

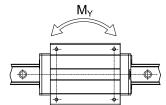
(3) QHW-CB / QHW-HB

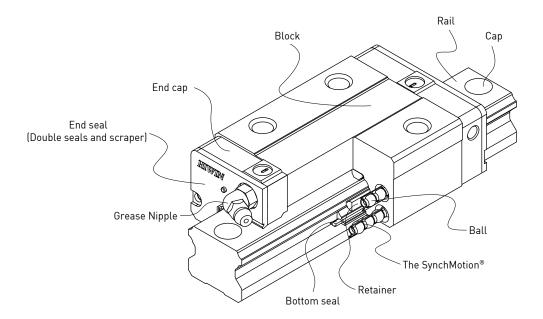



	of A	Dimensions of Assembly (mm)			Dimensions of Block (mm)												Dimensions of Rail (mm)					m)	Mounting Basic Bolt for Rail Load Rating		Static Load	Sta	atic Rat Iomen		We	ight			
Model No.																											Rating	Rating	M_R	M_{P}	\mathbf{M}_{Y}	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	М	Т	T ₁	T ₂	H ₂	H ₃	W _R	H_R	D	h	d	P	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
QHW15CB	24	4	16	47	38	4.5	30	39.4	61.4	8	5	5.3	Ø4.5	6	8.9	6.95	3.95	4.2	15	15	7.5	5.3	4.5	60	20	M4x16	17.94	19.86	0.1	0.08	0.08	0.17	1.45
QHW20CB		<i>1.</i>	21.5	43	53	5	<i>(</i> , n		76.7	9.75	4	12	Ø6	Ω	10	0.5	4	4	20	175	05	Q 5	4	4 0	20	M5x16	30.0	33.86	0.26	0.19	0.19	0.40	2.21
QHW20HB		4.0	21.5	03	55	J	40		91.4	17.1	Ü	12	νo	U	10	7.5	Ü	U	20	17.5	7.5	0.5	U	00	20	MISKIO	35.7	42.31	0.31	0.27	0.27	0.52	
QHW25CB		55	23.5	70	57	4 5	<i>/</i> E		83.4			12	07	0	1.6	10		5	22	22	11	0	7	40	20	M6x20	41.9	48.75	0.39	0.31	0.31	0.59	3.21
QHW25HB		J.J	23.3	70	37	0.5	43		104		0	12	W/	0	14	10	0	J	23	22	''	7	,	00	20	MOXZU	50.61	60.94	0.5	0.45	0.45	0.80	3.21
QHW30CB			31	0.0	72	0	52		97.4		4 25	12	ΜO	0 5	14	10	4 5		20	24	1.6	12	0	on	20	M8x25	58.26	66.34	0.6	0.5	0.5	1.09	4.47
QHW30HB		0	31	70	12	7	JZ		120.4		0.23	12	W7	0.5	10	10	0.5	0	20	20	14	12	7	00	20	MOXZJ	70.32	88.45	0.83	0.89	0.89	1.44	4.47
QHW35CB	/, Ω	75	33	100	82	0	62	80	113.6	13	75	12	ΜO	10 1	10	12	Ω 5	4.5	3 /	29	1.6	12	0	ΩN	20	M8x25	78.89	86.66	1.07	0.76	0.76	1.56	6.30
QHW35HB		7.3	33	100	02	7		105.8			7.0	12	W7	10.1	10	13	0.0	0.5	34	Z 7	14	12	7	00	20	1410.8.2.3	95.23	115.55	1.45	1.33	1.33	2.06	0.30
QHW45CB		0.2	37.5	120	100	10	on		139.4		10	12 0	Ø11	15 1	22	15	0 5	10	45	20	20	17	1.6	105	22 E	M12x35	119.4	135.42	1.83	1.38	1.38	2.79	10.41
QHW45HB		1.2	37.3	120	100	10		128.8			10	12.7	Ø11 1	13.1	22	15	0.0	10	45	30	20	17	14	100	22.3	M17793	144.13	180.56	2.47	2.41	2.41	3.69	10.41


QH Series


Heavy Load Type


(4) QHW-CC / QHW-HC

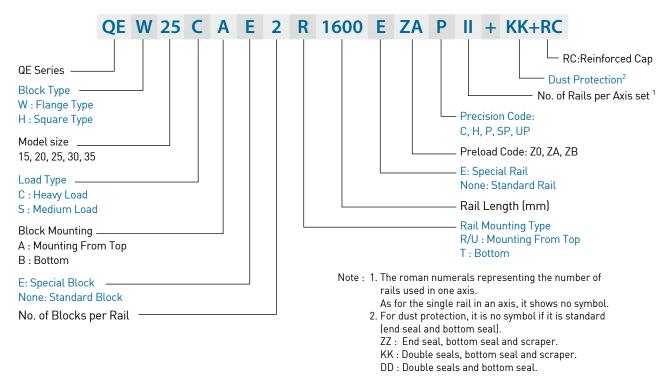


	of A		sions mbly		Dimensions of Block (mm)												Dimensions of Rail (mm)					m)	Mounting Basic Bolt for Load Rail Rating		Static Load	Sta	atic Rat Iomen		Wei	ight			
Model No.																											Rating	Rating	M_R	$M_{\rm P}$	$M_{\scriptscriptstyle Y}$	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	М	Т	T ₁	T ₂	H ₂	H ₃	W _R	H_R	D	h	d	P	Е	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
QHW15CC	24	4	16	47	38	4.5	30	39.4	61.4	8	5	5.3	M5	6	8.9	6.95	3.95	4.2	15	15	7.5	5.3	4.5	60	20	M4x16	17.94	19.86	0.1	0.08	0.08	0.17	1.45
QHW20CC		, ,	21 5	/2	E2			50.5		9.75	,	10	M	0	10	9.5	,	,	20	17.5	0 5	0 5	,	/ 0	20	M5x16	30.0	33.86	0.26	0.19	0.19	0.40	2.21
QHW20HC		4.6	21.5	63	33	Э		65.2		17.1	6	12	MO	8	10	7.5	6	0	20	17.5	7.5	8.5	0	60	20	MOXIO	35.7	42.31	0.31	0.27	0.27	0.52	
QHW25CC			22.5	70	F7	/ -	/ -	58	83.4		,	10	MO	0	1/	10	,	_	22	22	11	0	7	/ 0	20	M6x20	41.9	48.75	0.39	0.31	0.31	0.59	3.21
QHW25HC		5.5	23.5	70	5/	6.3	45	78.6			6	12	MR	8	14	10	6	Э	23	22	11	9	,	60	20	M6XZU	50.61	60.94	0.5	0.45	0.45	0.80	3.21
QHW30CC		6	31	00	70	0	F.0		97.4		/ 25	10	M10	0.5	1/	10	, -	,	20	27	1/	10	0	0.0	20	M8x25	58.26	66.34	0.6	0.5	0.5	1.09	4.47
QHW30HC		6	31	90	12	9	52			25.75		12	MIU	8.5	10	10	6.5	0	28	26	14	12	9	80	20	M8X25	70.32	88.45	0.83	0.89	0.89	1.44	4.47
QHW35CC		7 5	22	100	02	0	/2		113.6		7 5	10	M10	10.1	10	12	0 E	/ =	27	20	1/	10	0	0.0	20	M8x25	78.89	86.66	1.07	0.76	0.76	1.56	6.30
QHW35HC		7.5	JJ	100	02	7		105.8			7.0	12	IVI IU	10.1	10	13	0.0	0.0	34	27	14	12	1	00	20	MOXZO	95.23	115.55	1.45	1.33	1.33	2.06	0.30
QHW45CC		0.2	37.5	120	100	10		97			10	12.0	M12	15 1	22	15	0 5	10	4 E	20	20	17	1./	10F	22 F	M12x35	119.4	135.42	1.83	1.38	1.38		10.41
QHW45HC		7.2	37.3	120	100	10		128.8			10	12.9	IVIΙΖ	13.1	22	13	0.0	10	40	30	20	17	14	103	22.5	IVI I Z X 3 3	144.13	180.56	2.47	2.41	2.41		10.41

2-6 QE Series – Low Profile Linear Guideway, with SynchMotion® Technology

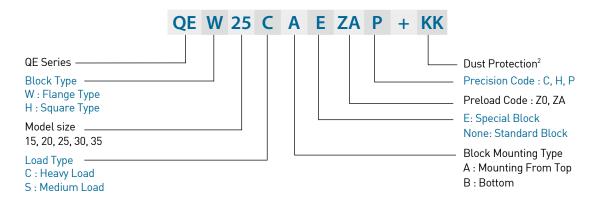
The development of QE linear guideway is based on a four-row circular-arc contact. The QE series linear guideway with SynchMotion® Technology offers smooth movement, superior lubrication, quieter operation and longer running life. Therefore the QE linear guideway has broad industrial applicability. In the high-tech industry where high speed, low noise, and reduced dust generation is required, the QE series is interchangeable with the EG series.

2-6-1 Construction

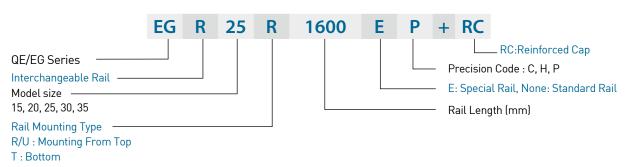

2-6-2 Model Number of QE Series

QE series guideway can be classified into non-interchangeable and interchangeable types. The sizes are identical. The main difference is that the interchangeable blocks and rails can be freely exchanged. Because of dimensional control, the interchangeable type linear guideway is a perfect choice for the client when rails do not need to be paired for an axis. And since the QE and EG share the identical rails, the customer does not need to redesign when choosing the QE series. Therefore the QE linear guideway has increased applicability.

QE Series


Low Profile

(1) Non-interchangeable type



(2) Interchangeable type

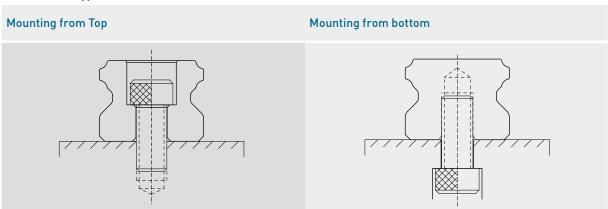
Model Number of QE Block

Model Number of QE Rail (QE and EG share the identical rails)

2-6-3 Types

(1) Block types

HIWIN offers two types of linear guideways, flange and square types.

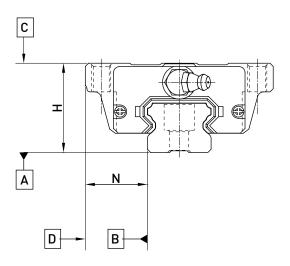

Table 2-6-1 Block Type

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	QEH-SA QEH-CA		24 ↓ 48	100 ↓ 4000	 Automation devices High-speed transportation equipment Precision measuring equipment
Flange	QEW-SA QEW-CA		24 ↓ 48	100 ↓ 4000	 Semiconductor manufacturing equipment
Flan	QEW-SB QEW-CB		24 ↓ 48	100 ↓ 4000	

(2) Rail types

Besides the standard top mounting type, the bottom mounting type is also available.

Table 2-6-2 Rail Types



QE Series

Low Profile

2-6-4 Accuracy

The accuracy of the QE series can be classified into 5 classes: normal(C), high(H), precision(P), super precision(SP), and ultra precision(UP). Choose the class by referencing the accuracy of selected equipment.

(1) Accuracy of non-interchangeable guideways

Table 2-6-3 Accuracy Standards

Unit: mm

				Onit. min
QE - 15, 20				
Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
0.02	0.01	0.006	0.004	0.003
0.02	0.01	0.006	0.004	0.003
		See Table 2-6	-7	
		See Table 2-6	-7	
	Normal (c) ± 0.1 ± 0.1 0.02	Normal High (c) (H) ± 0.1 ± 0.03 ± 0.1 ± 0.03 0.02 0.01	Normal High Precision (c) (H) (P) \pm 0.1 \pm 0.03 0 - 0.03 \pm 0.1 \pm 0.03 0 - 0.03 0.02 0.01 0.006 0.02 0.01 0.006 See Table 2-6	Normal High Precision Super Precision (SP) \pm 0.1 \pm 0.03 0 0 \pm 0.1 \pm 0.03 0 0 \pm 0.1 \pm 0.03 0 0 \pm 0.01 0 0 0 0.02 0.01 0.006 0.004

Table 2-6-4 Accuracy Standards

Unit: mm

Item	QE - 25, 30,	35			
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.02	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A			See Table 2-6	-7	
Running parallelism of block surface D to surface B $$			See Table 2-6	-7	

(2) Accuracy of interchangeable guideways

Table 2-6-5 Accuracy Standards

Unit: mm

Item	QE - 15, 20		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.03	± 0.015
Dimensional tolerance of width N	± 0.1	± 0.03	± 0.015
Variation of height H	0.02	0.01	0.006
Variation of width N	0.02	0.01	0.006
Running parallelism of block surface C to surface A		See Table 2-6-7	
Running parallelism of block surface D to surface B		See Table 2-6-7	

Table 2-6-6 Accuracy Standards

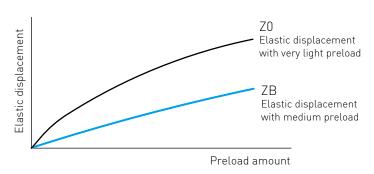
Unit: mm

Table 2-0-0 Accuracy Standards			Offic. Hilli
Item	QE - 25, 30, 35		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.1	± 0.04	± 0.02
Variation of height H	0.02	0.015	0.007
Variation of width N	0.03	0.015	0.007
Running parallelism of block surface C to surface A		See Table 2-6-7	
Running parallelism of block surface D to surface B $$		See Table 2-6-7	

(3) Accuracy of running parallelism

Table 2-6-7 Accuracy of Running Parallelism

Rail Length (mm)	Accuracy (µm)				
,	C	Н	P	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7


QE Series

Low Profile

2-6-5 Preload

(1) Definition

A preload can be applied to each guideway. Generally, a linear motion guideway has a negative clearance between the groove and balls in order to improve stiffness and maintain high precision. The figure shows that adding a preload can improve stiffness of the linear guideway. A preload no greater than ZA would be recommended for model sizes smaller than QE20. This will avoid an over-loaded condition that would affect guideway life.

(2) Preload classes

HIWIN offers three standard preloads for various applications and conditions.

Table 2-6-8 Preload Classes

Class	Code	Preload	Condition
Very Light Preload	Z0	0~ 0.02C	Certain load direction, low impact, low precision required
Light Preload	ZA	0.03C~0.05C	low load and high precision required
Medium Preload	ZB	0.06C~ 0.08C	High rigidity required, with vibration and impact

Class	Interchangeable Guideway	Non-Interchangeable Guideway
Preload classes	Z0, ZA	Z0, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

2-6-6 Mounting location

The standard location of the grease fitting is at both ends of the block, the nipple may be mounted in the side or top of the block. For lateral installation, we recommend that the nipple be mounted to the non-reference side, otherwise please contact us. When lubricating from above, in the recess for the O-ring, a smaller, preformed recess can be found. Preheat the 0.8 mm diameter metal tip. Carefully open the small recess with the metal tip and pierce through it.

Insert a round sealing ring into the recess. (The round sealing ring is not supplied with the block) Do not open the small recess with a drill bit this may introduce the danger of contamination. It is possible to carry out the lubrication by using the oil-piping joint.

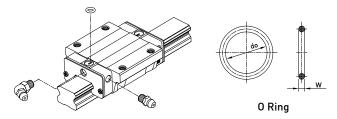
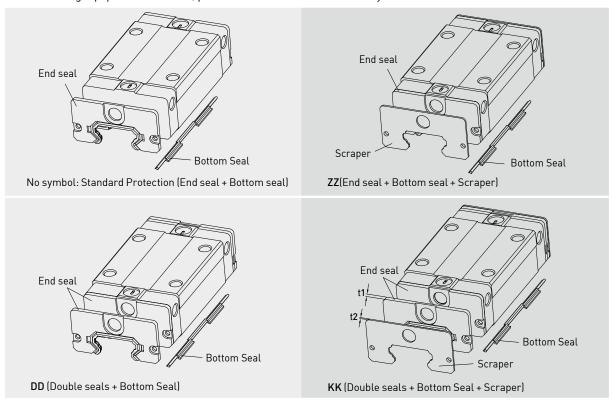


Table 2-6-9 O-Ring size and max. permissible depth for piercing


Size	O-Ring		Lube hole at top: max. permissible depth for piercing
	do(mm)	W (mm)	T _{max} (mm)
QE 15	2.5±0.15	1.5±0.15	5.3
QE 20	4.5±0.15	1.5±0.15	5.8
QE 25	3±0.15	2.5±0.15	7
QE 30	4.5±0.15	1.5±0.15	7.8
QE 35	4.5±0.15	1.5±0.15	8.3

2-6-7 Dust Protection Equipment

(1) Codes of equipment

If the following equipment is needed, please indicate the code followed by the model number.

(2) End seal and bottom seal

To prevent life reduction caused by iron chips or dust entering the block.

(3) Double seals

Removes foreign matter from the rail preventing contaminants from entering the block.

Table 2-6-10 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
QE15 ES	2	QE30 ES	2.5
QE20 ES	2	QE35 ES	2
QE25 ES	2.5		

(4) Scraper

Clears larger contaminants, such as weld spatter and metal cuttings, from the rail. Metal scraper protects end seals from excessive damage.

Table 2-6-11 Dimensions of Scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
QE15 SC	1	QE30 SC	1
QE20 SC	1	QE35 SC	1.5
QE25 SC	1		

QE Series

Low Profile

(5) Dimensions of block equipped with the dustproof parts

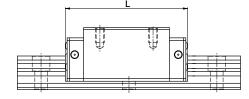


Table 2-6-12 Overall block length

unit: mm

Size	Overall block length	(L)		
Size	SS	ZZ	DD	KK
QE15S	40.1 (42.9)	42.1 (46.5)	44.1 (46.9)	46.1 (50.5)
QE15C	56.8 (59.6)	58.8 (63.2)	60.8 (63.6)	62.8 (67.2)
QE20S	50.0 (54.0)	52.0 (58.0)	54.0 (58.0)	56.0 (62.0)
QE20C	69.1 (73.1)	71.1 (77.1)	73.1 (77.1)	75.1 (81.1)
QE25S	60.1 (63.5)	62.1 (68.1)	65.1 (68.5)	67.1 (73.1)
QE25C	83.6 (87.0)	85.6 (91.6)	88.6 (92.0)	90.6 (96.6)
QE30S	67.5 (71.3)	69.5 (75.5)	72.5 (76.3)	74.5 (80.5)
QE30C	96.1 (99.9)	98.1 (104.1)	101.1 (104.9)	103.1 (109.1)
QE35S	76.0 (80.0)	79.0 (85.0)	80.0 (84.0)	83.0 (89.0)
QE35C	108.0 (112)	111.0 (117.0)	112.0 (116.0)	115.0 (121.0)

Note: The marking of "[]" denotes the maximum block length with screws, lips of end seals, etc.

2-6-8 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-6-13 Seal Resistance

Size	Resistance N (kgf)	Size	Resistance N (kgf)
QE15	1.08 (0.11)	QE30	2.06 (0.21)
QE20	1.37 (0.14)	QE35	2.26 (0.23)
QE25	1.67 (0.17)		

Note:1kgf=9.81N

2-6-9 Mounting Surface Accuracy Tolerance

Because of the circular-arc contact design, the QE linear guideway can withstand surface-error installation and deliver smooth linear motion. When the mounting surface meets the accuracy requirements of the installation, the high accuracy and rigidity of the guideway will be obtained without any difficulty. For faster installation and smoother movement, HIWIN offers a preload with normal clearance because of its ability to absorb higher deviations in mounting surface inaccuracies.

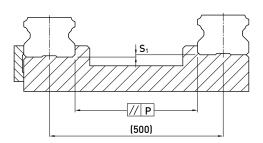


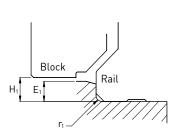
Table 2-6-14 Max. Parallelism Tolerance (P)

unit: µm

Size	Preload clas	sses		Size	Preload clas	ses	
Size	Z0	ZA	ZB	Size	Z0	ZA	ZB
QE15	25	18	-	QE30	40	30	27
QE20	25	20	18	QE35	50	35	30
QE25	30	22	20				

Table 2-6-15 Max. Tolerance of Reference Surface Height (S₁)

unit: µm


Size	Preload clas	sses		Size	Preload class	ses	
Size	Z0	ZA	ZB	Size	Z 0	ZA	ZB
QE15	130	85	-	QE30	170	110	90
QE20	130	85	50	QE35	210	150	120
QE25	130	85	70				

Note: The allowable value is proportional to the distance between the axes.

2-6-10 Cautions for Installation

(1) Shoulder heights and chamfers

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

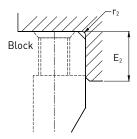


Table 2-6-16 Shoulder Heights and Chamfers

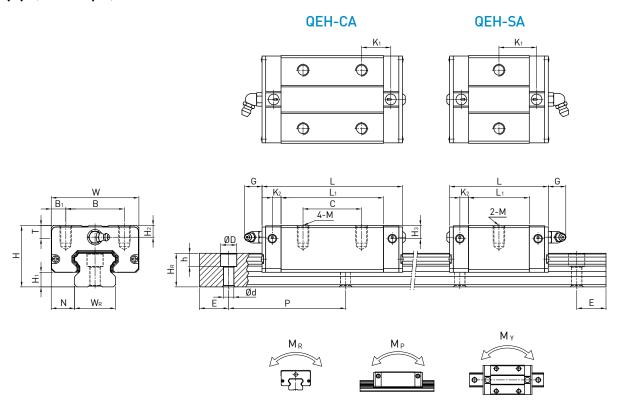
unit: mm

Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r_2 (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E_2 (mm)	Clearance under block H ₁ (mm)
QE15	0.5	0.5	2.7	5.0	4.0
QE20	0.5	0.5	5.0	7.0	6.0
QE25	1.0	1.0	5.0	7.5	6.2
QE30	1.0	1.0	7.0	7.0	10.0
QE35	1.0	1.5	7.5	9.5	11.0

(2) Tightening Torque of Bolts for Installation

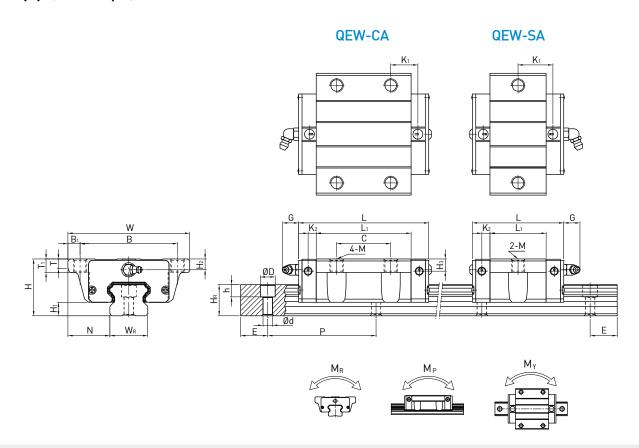
Improperly tightened mounting bolts will seriously affect the accuracy of linear guide installations. The following tightening torques for different sizes of bolts are recommended.

Table 2-6-17 Tightening Torque


	5 .			
Size	Bolt size	Torque N-cm(kgf-cm)		
Size	Dott Size	Iron	Casting	Aluminum
QE15	M3×0.5P×16L	186 (19)	127 (13)	98(10)
QE20	M5×0.8P×16L	883 (90)	588 (60)	441 (45)
QE25	M6×1P×20L	1373 (140)	921 (94)	686 (70)
QE30	M6×1P×25L	1373 (140)	921 (94)	686 (70)
QE35	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)

Low Profile

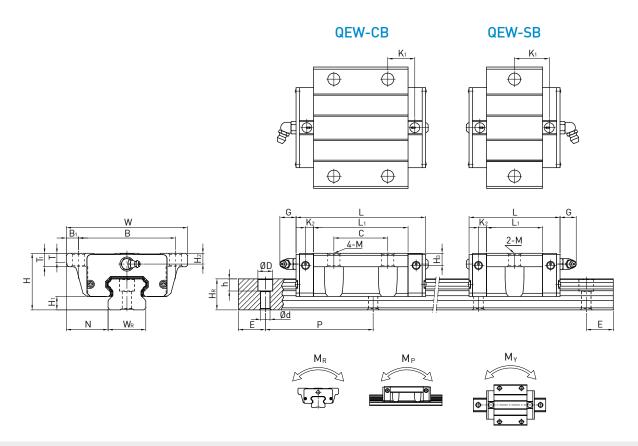
QE Series


2-6-11 Dimensions for HIWIN QE Series

(1) QEH-CA / QEH-SA

			nbly					Dime	ensior	ns of B	lock (mm)				Di	imen	sion	s of	Rail	(mm	n)	Mounting Bolt for Rail	Load	Load	'	atic Rat Momen		Wei	íght
Model No.			•																						Rating	Rating	M_R	M _P	IVIY	Block	
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	H_R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
QEH15SA	24		0.5	2/	24				40.1		2.5	57	MAyA		5.5		15	12.5		<i>/</i> E	2.5	40	20	M3x16	8.56	8.79	0.07	0.03	0.03	0.09	1.25
QEH15CA	24	4	7.5	34	20	4				10.15	3.3	J./	IM4X0	0	J.J	0	13	12.3	O	4.5	3.3	00	20	MISKIO	12.53	15.28	0.12	0.09	0.09	0.15	1.23
QEH20SA	28	6	11	42	32	5	-			18.75	/ ₁ 15	12	M5x7	75	4	4.5	20	15.5	0.5	25	4	4 0	20	M5x16	11.57	12.18	0.13	0.05	0.05	0.15	2.08
QEH20CA	20	0	11	42	32	J			69.1		4.13	12	MJX/	7.5	O	0.5	20	13.3	7.5	0.5	0	00	20	MUXIO	16.50	20.21	0.21	0.15	0.15	0.23	2.00
QEH25SA	33	62	12 5	/ ₄ Q					60.1		5	12	MAvQ	Q	8	8	23	18	11	9	7	4 0	20	M6x20	18.24	18.90	0.22	0.10	0.10	0.24	2.67
QEH25CA	33	0.2	12.3	40	33	0.5				16.15	J	12	IMOX 7	0	0	0	23	10	11	7	,	00	20	MOXZU	26.03	31.49	0.37	0.29	0.29	0.40	2.07
QEH30SA	42	10	14	۷.0	4 0					25.75		12	M0v12	0	0	0	28	23	11	0	7	on	20	M6x25	26.27	27.82	0.40	0.18	0.18	0.44	4.35
QEH30CA	42	10	10	00	40 10	10				20.05	0	12	MOXIZ	7	O	7	20	23	11	7	,	00	20	MOXZJ	37.92	46.63	0.67	0.51	0.51	0.75	4.33
QEH35SA	/0	11	10	70	En	10	-		76		/ 25	12	M8x12	10	0 E	0 E	27	27 5	1/	10	9	00	20	M8x25	36.39	36.43	0.61	0.33	0.33	0.77	6.14
QEH35CA	48	11	18	70	50	10	50	83		21.3	0.23	12	MOXIZ	10	0.5	0.5	34	27.5	14	12	7	οU	20	CZXOIVI	51.18	59.28	1.00	0.75	0.75	1.19	0.14

(2) QEW-CA / QEW-SA

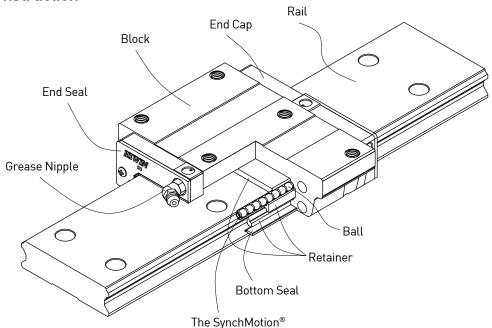


	- 1	sser	nbly					Dim	ensi	ons of	Bloc	k (m	m)					Di	mens	sions	s of F	Rail	(mn	n)	Mounting Bolt for Rail	Dynamic Load	Load	Ste N	atic Ra Momen	ted nt	Wei	ight
Model No.			N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	т	T ₁	H ₂	H ₃	\mathbf{W}_{R}	H_R	D	h	d	Р	E	(mm)	Rating C(kN)	_			1-14	Block kg	
QEW15SA	27	,								14.8	2.5	- 7	М	_	7		,	15	10.5	,	, -	2 -	/0	20	M3×16	8.56	8.79	0.07	0.03	0.03	0.12	1.25
QEW15CA		4								10.15		5.7	СМ	Э	,	5.5	6	15	12.5	6	4.5	3.5	60	20	M3×16	12.53	15.28	0.12	0.09	0.09	0.21	1.25
QEW20SA	00	,	10.5	F0	/0					18.75	. 15	10	147	-	0	,	, -	00	15.5	٥٦	٥٦	,	/0	00	NE 47	11.57	12.18	0.13	0.05	0.05	0.19	0.00
QEW20CA		0	17.5	37						12.3		12	MO	/	7	0	6.5	20	15.5	7.5	8.5	0	60	20	M5×16	16.50	20.21	0.21	0.15	0.15	0.31	2.08
QEW25SA	00	, 0	٥٢	70						21.9	_	10	140	7.5	10	0	0	00	10	11	0	_	/0	00	M/ 00	18.24	18.90	0.22	0.10	0.10	0.34	0.45
QEW25CA		6.2	25	/3	60					16.15	5	12	M8	7.5	10	8	8	23	18	11	9	/	60	20	M6×20	26.03	31.49	0.37	0.29	0.29	0.58	2.67
QEW30SA	40	10		00	70	0	-	41.5	67.5	25.75	,	10	1440	-	10	0	0	00	00	11	0		00	00	N/ 05	26.27	27.82	0.40	0.18	0.18	0.61	
QEW30CA	42	10	31	90 72					20.05	6	12	MIU	/	10	8	9	28	23	11	9	/	80	20	M6×25	37.92	46.63	0.67	0.51	0.51	1.03	4.35	
QEW35SA		44	00	400						30.3	, 05	40		40	10	0.5	٥.	٥,	05.5	.,	40	•	00	00	140.05	36.39	36.43	0.61	0.33	0.33	0.77	
QEW35CA	48	11	1 33	100	82	9				21.3		12	M10	10	13	8.5	8.5	34	27.5	14	12	9	80	20	M8×25	51.18	59.28	1.00	0.75	0.75	1.19	6.14

QE Series

Low Profile

(3) QEW-CB / QEW-SB

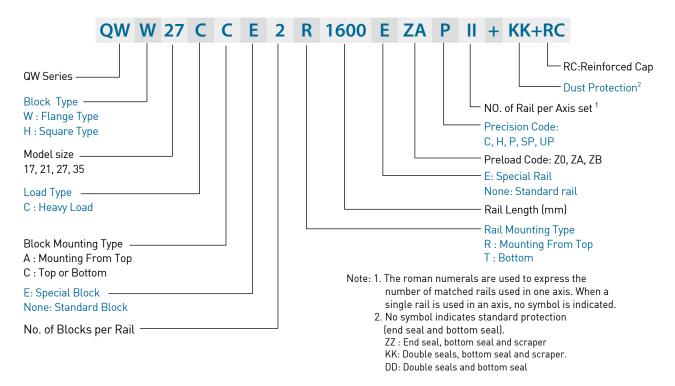

	of A		ions nbly					Din	nensi	ons of	Bloc	:k (m	nm)					D)imen	sion	ıs of	Rail	(mm)	Mounting Bolt for Rail				itic Ra Iomen	nt	We	
Model No.			N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	\mathbf{W}_{R}	H_R	D	h	d	Р	E	(mm)	Rating C(kN)		M_R		M _Y		
QEW15SB		,	10.5	50	/1		-	23.1	40.1	14.8	٥٠		0 / 5	_	-		,	45	10.5	,	, -	٥٠		00	140 17	8.56	8.79	0.07	0.03	0.03	0.12	1.05
QEW15CB		4			41 5.							5./	Ø 4.5	5	/	5.5	6	15	12.5	6	4.5	3.5	60	20	M3X16	12.53	15.28	0.12	0.09	0.09	0.21	1.25
QEW20SB		4	10 5	50	/, Q					18.75	<i>l</i> , 15	12	Ø 5 5	7	0	4	45	20	15.5	0.5	Ω 5	4	4 0	20	M5x16	11.57	12.18	0.13	0.05	0.05	0.19	2.08
QEW20CB		0	17.5	37	47	J				12.3	4.13	12	Ø J.J	,	7	0	0.5	20	13.3	7.3	0.5	0	00	20	MIDXIO	16.50	20.21	0.21	0.15	0.15	0.31	2.00
QEW25SB	33	62	25	73	٨n	4.5	-	35.5	60.1	21.9	5	12	Ø7	75	10	8	R	23	18	11	q	7	٨n	20	M6x20	18.24	18.90	0.22	0.10	0.10	0.34	2.67
QEW25CB		0.2	23	73	00					16.15	J	12	V)	7.5	10	O	U	23	10	''	,	,	00	20	MOXZO	26.03	31.49	0.37	0.29	0.29	0.58	2.07
QEW30SB	//2	10	31	90	72					25.75	6	12	МQ	7	10	8	9	28	23	11	q	7	ន្តព	20	M6x25	26.27	27.82	0.40	0.18	0.18	0.61	4 35
QEW30CB		10	JI	70	12					20.05	U	12	ν,7	′	10	J	,	20	23	''	,	,	00	20	MUXZJ	37.92	46.63	0.67	0.51	0.51	1.03	4.33
QEW35SB		11	22	100	02	0				30.3	4 25	12	МO	10	12	0 5	0 5	2/	27.5	1.6	12	0	on	20	M8x25	36.39	36.43	0.61	0.33	0.33	0.77	6.14
QEW35CB		11	33	100	0 82	7				21.3	0.23	12	לע	10	13	6.3	0.5	54	27.3	14	12	1	00	20	INOXZ3	51.18	59.28	1.00	0.75	0.75	1.19	0.14

2-7 QW Series - Wide Rail Linear Guideway, with SynchMotion® Technology

2-7-1 Features

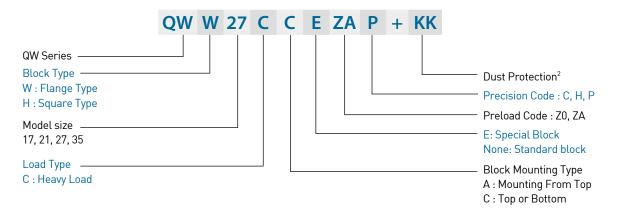
The QW series linear guideway with SynchMotion® Technology possesses all the advantages of the WE series, which features high moment rigidity and is suitable for single rail or space saving applications. With the SynchMotion® technology it also provides quieter and smoother movement, superior lubrication, and longer service life.

2-7-2 Construction

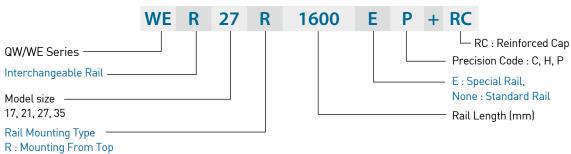

2-7-3 Model Number of QW Series

QW series guideway can be classified into non-interchangeable and interchangeable types. The sizes are identical. The main difference is that the interchangeable blocks and rails can be freely exchanged. Because of dimensional control, the interchangeable type linear guideway is a perfect choice for the client when rails do not need to be paired for an axis. And since the QW and WE share the identical rails, the customer does not need to redesign when choosing the QW series. Therefore the QW linear guideway has increased applicability.

QW Series


Wide Rail

(1) Non-interchangeable type



(2) Interchangeable type

Model Number of QW Block

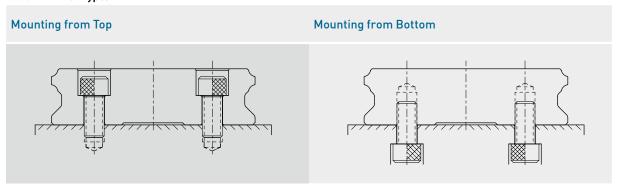
Model Number of QW Rail (QW and WE share the identical rails)

T : Bottom

2-7-4 Types

(1) Block types

HIWIN offers two types of linear guideways, flange and square types.

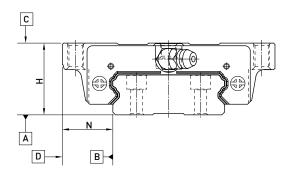

Table 2-7-1 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	QWH-CA		17 ↓ 35	100 ↓ 4000	Automation devicesHigh-speed transportation equipment
Flange	QWW-CC		17 ↓ 35	100 ↓ 4000	 Precision measuring equipment Semiconductor manufacturing equipment

(2) Rail types

Besides the standard top mounting type, HIWIN also offers bottom mounting type rails.

Table 2-7-2 Rail Types



QW Series

Wide Rail

2-7-5 Accuracy

The accuracy of the QW series can be classified into 5 classes: normal(C), high(H), precision(P), super precision(SP), and ultra precision(UP). Choose the class by referencing the accuracy of selected equipment.

(1) Accuracy of non-interchangeable guideways

Table 2-7-3 Accuracy Standards

Unit: mm

2275 Accuracy Standards						Offic: Iffili			
QW - 1	QW - 17, 21				QW - 27, 35				
Normal	High	Precision	Super Precision	Ultra Precision	Normal	High	Precision	Super Precision	Ultra Precision
(C)	(H)	(P)	(SP)	(UP)	(C)	(H)	(P)	(SP)	(UP)
± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
0.02	0.01	0.006	0.004	0.003	0.02	0.015	0.007	0.005	0.003
0.02	0.01	0.006	0.004	0.003	0.03	0.015	0.007	0.005	0.003
	See Table 2-7-5								
	See Table 2-7-5								
	Normal (C) ± 0.1 ± 0.1 0.02	(C) (H) ± 0.1 ± 0.03 ± 0.1 ± 0.03 0.02 0.01	Normal High Precision (C) (H) (P) ± 0.1 ± 0.03 0 - 0.03 ± 0.1 ± 0.03 0 - 0.03 0.02 0.01 0.006		Normal High Precision Precision (C) (H) (P) (SP) (UP) ± 0.1 ± 0.03 0 0 0 0 - 0.03 - 0.015 - 0.008 ± 0.1 ± 0.03 0 0 0 - 0.03 - 0.015 - 0.008 0.02 0.01 0.006 0.004 0.003 See Tab		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

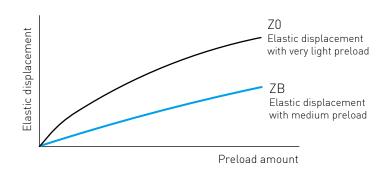
(2) Accuracy of interchangeable guideways

Table 2-7-4 Accuracy Standards

Unit: mm

Item	QW - 17, 21			QW - 27, 35		
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.03	± 0.015	± 0.1	± 0.04	± 0.02
Dimensional tolerance of width N $$	± 0.1	± 0.03	± 0.015	± 0.1	± 0.04	± 0.02
Variation of height H	0.02	0.01	0.006	0.02	0.015	0.007
Variation of width N	0.02	0.01	0.006	0.03	0.015	0.007
Running parallelism of block surface C to surface A	See Table 2-7-5					
Running parallelism of block surface D to surface B		See Table 2-7-5				

(3) Accuracy of running parallelism


Table 2-7-5 Accuracy of Running Parallelism

Rail Length (mm)	Accuracy (µm)				
,	С	Н	Р	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7

2-7-6 Preload

(1) Definition

A preload can be applied to each guideway. Generally, a linear motion guideway has a negative clearance between the groove and balls in order to improve stiffness and maintain high precision. The figure shows that adding a preload can improve stiffness of the linear guideway.

(2) Preload classes

HIWIN offers three standard preloads for various applications and conditions.

Table 2-7-6 Preload Classes

Table 2 7 0 1 Teloud elus	303		
Class	Code	Preload	Condition
Very Light Preload	Z0	0~ 0.02C	Certain load direction, low impact, low precision requirement
Light Preload	ZA	0.03C~0.05C	low load and high precision requirement
Medium Preload	ZB	0.06C~ 0.08C	High rigidity requirement, with vibration and impact
Class	Interchangeab	le Guideway	Non-Interchangeable Guideway
Otuss	interenangeab	te outdervay	Non interchangeaste outdeway
Preload classes	Z0, ZA		Z0, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

2-7-7 Mounting location

The standard location of the grease fitting is at both ends of the block, the nipple may be mounted in the side or top of the block. For lateral installation, we recommend that the nipple be mounted to the non-reference side, otherwise please contact us. When lubricating from above, in the recess for the O-ring, a smaller, preformed recess can be found. Preheat the 0.8 mm diameter metal tip. Carefully open the small recess with the metal tip and pierce through it. Insert a round sealing ring into the recess. (The round sealing ring is not supplied with the block) Do not open the small recess with a drill bit this may introduce the danger of contamination. It is possible to carry out the lubrication by using the oil-piping joint.

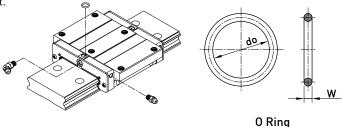
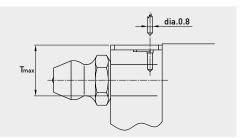
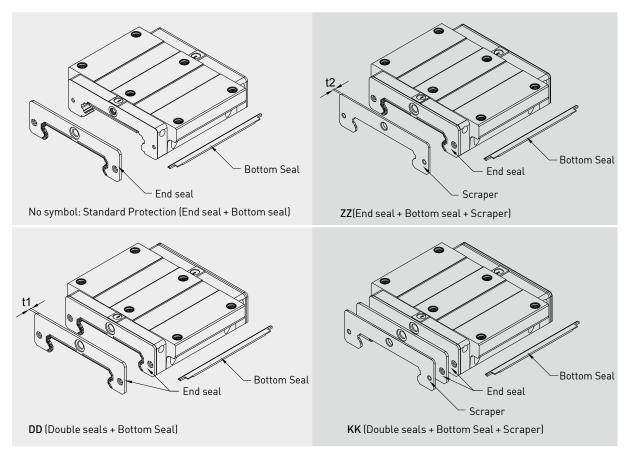



Table 2-7-7 O-Ring size and max. permissible depth for piercing


Size	0-Ring		Lube hole at top: max. permissible depth for piercing
	do(mm)	W (mm)	T _{max} (mm)
QW 21	2.5±0.15	1.5±0.15	4.2
QW 27	2.5±0.15	1.5±0.15	5.7
QW 35	4.5±0.15	1.5±0.15	7.6

2-7-8 Dust Protection Equipment

(1) Codes of equipment

If the following equipment is needed, please indicate the code followed by the model number.

(2) End seal and bottom seal

Protects against contaminants entering the block. Reduces potential for groove damage resulting in a reduction of life ratings.

(3) Double seals

Removes foreign matter from the rail preventing contaminants from entering the block.

Table 2-7-8 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
QW17	1.6	QW27	2
QW21	2	QW35	2

(4) Scraper

Clears larger contaminants, such as weld spatter and metal cuttings, from the rail. Metal scraper protects end seals from excessive damage.

Table 2-7-9 Dimensions of Scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
QW17	1	QW27	1
QW21	1	QW35	1.5

(5) Dimensions of block equipped with the dustproof parts

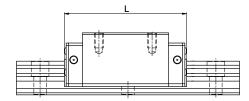


Table 2-7-10 Overall block length

unit: mm

Size	Overall block length (L)							
	SS	ZZ	DD	KK				
QW17C	51.0 (53.0)	53.0 (56.0)	54.2 (56.2)	56.2 (59.2)				
QW21C	59.0 (63.0)	61.0 (67.0)	63.0 (67.0)	65.0 (71.0)				
QW27C	73.2 (77.2)	75.2 (81.2)	77.2 (81.2)	79.2 (85.2)				
QW35C	107.0 (111.0)	110.0 (116.0)	111.0 (115.0)	114.0 (120.0)				

 $Note: The \ marking \ of \ ``(\ \)" \ denotes \ the \ maximum \ block \ length \ with \ screws, \ lips \ of \ end \ seals, \ etc.$

2-7-9 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-7-11 Seal Resistance

Size	Resistance N (kgf)	Size	Resistance N (kgf)
QW17	1.18 (0.12)	QW27	2.94 (0.3)
QW21	1.96 (0.2)	QW35	3.92 (0.4)

Note:1kgf=9.81N

QW Series

Wide Rail

2-7-10 Mounting Surface Accuracy Tolerance

Because of the circular-arc contact design, the QW linear guideway can withstand surface-error installation and deliver smooth linear motion. When the mounting surface meets the accuracy requirements of the installation, the high accuracy and rigidity of the guideway will be obtained without any difficulty. For faster installation and smoother movement, HIWIN offers a preload with normal clearance because of its ability to absorb higher deviations in mounting surface inaccuracies.

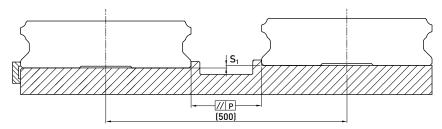
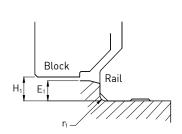


Table 2-7-12 Max. Parallelism Tolerance (P)

unit: µm

Size Preload Z0	Preload classes			Size	Preload classes		
	Z 0	ZA	ZB	Size	Z 0	ZA	ZB
QW17	20	15	-	QW27	25	20	-
QW21	25	18	-	QW35	30	22	20

Table 2-7-13 Max. Tolerance of Reference Surface Height (S₁)


unit: µm

Size	Preload clas	ses		Size	Preload classes		
Size	Z0	ZA	ZB		Z 0	ZA	ZB
QW17	65	20	-	QW27	130	85	-
QW21	130	85	-	QW35	130	85	70

2-7-11 Cautions for Installation

(1) Shoulder heights and chamfers

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

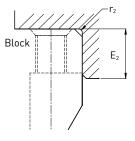


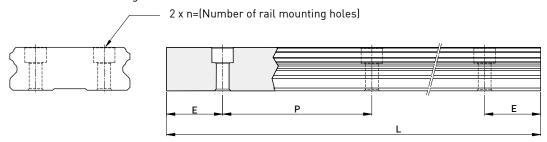
Table 2-7-14 Shoulder Heights and Chamfers

unit: mm

Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
QW17	0.4	0.4	2.0	4.0	2.5
QW21	0.4	0.4	2.5	5.0	3.0
QW27	0.5	0.4	2.5	7.0	4.0
QW35	0.5	0.5	2.5	10.0	4.0

(2) Tightening Torque of Bolts for Installation

Improperly tightened mounting bolts will seriously affect the accuracy of linear guide installations. The following tightening torques for different sizes of bolts are recommended.


Table 2-7-15 Tightening Torque

Size	Bolt size	Torque N-cm(kgf-cm)		
Size	Dott Size	Iron	Casting	Aluminum
QW17	M4×0.7P×12L	392 (40)	274 (28)	206 (21)
QW21	M4×0.7P×12L	392 (40)	274 (28)	206 (21)
QW27	M4×0.7P×16L	392 (40)	274 (28)	206 (21)
QW35	M6×1P×20L	1373 (140)	921 (94)	686 (70)

Note: 1 kgf = 9.81 N

2-7-12 Standard and Maximum Lengths of Rail

HIWIN offers a number of standard rail lengths. Standard rail lengths feature end mounting hole placements set to predetermined values (E). For non-standard rail lengths, be sure to specify the E-value to be no greater than 1/2 the pitch (P) dimension. An E-value greater than this will result in unstable rail ends.

L = (n-1)xP + 2xE Eq.2.3

- L : Total length of rail (mm)
- n: Number of mounting holes
- P : Distance between any two holes (mm)
- E: Distance from the center of the last hole to the edge (mm)

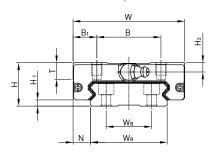
Table 2-7-16 Rail Standard Length and Max. Length

unit: mm

	,			
Item	QWR17	QWR21	QWR27	QWR35
	110 (3)	130 (3)	220 (4)	280 (4)
	190 (5)	230 (5)	280 (5)	440 (6)
	310 (8)	380 (8)	340 (6)	600 (8)
	390 (10)	480 (10)	460 (8)	760 (10)
Standard Length L(n)	470 (12)	580 (12)	640 (11)	1000 (13)
	550 (14)	780 (16)	820 (14)	1,640 (21)
	-	-	1,000 (17)	2,040 (26)
	-	-	1,240 (21)	2,520 (32)
	-	-	1,600 (27)	3,000 (38)
Pitch (P)	40	50	60	80
Distance to End (E _s)	15	15	20	20
Max. Standard Length	3,990 (100)	3,980 (80)	4,000 (67)	3,960 (50)
Max. Length	4,000	4,000	4,000	4,000

Note: 1. Tolerance of E value for standard rail is 0.5~-0.5 mm. Tolerance of E value for jointed rail is 0~-0.3 mm.

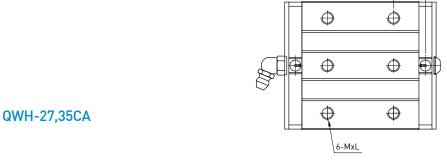
- 2. Maximum standard length means the max. rail length with standard E value on both sides.
- 3. If different E value is needed, please contact HIWIN.

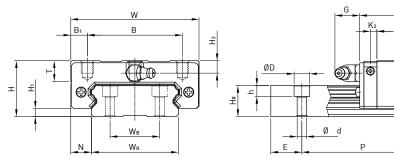

QW Series

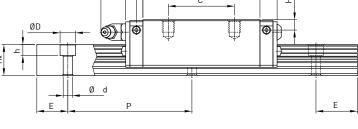
Wide Rail

2-7-13 Dimensions for HIWIN QW Series

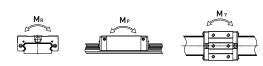
(1) QWH-CA

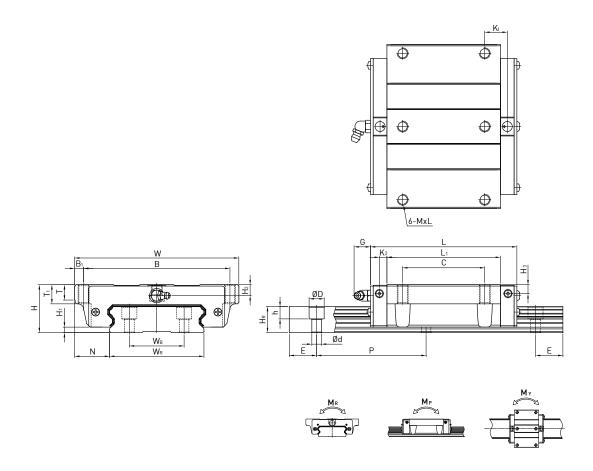



 \oplus


 $\dot{\oplus}$

Ф


4-MxL



Lı

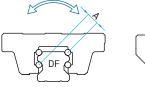
	of A	nensi Isser	nbly					Dime	ensio	ns of	Bloc	k (m	m)					Dim	ensi	ons	of R	ail (r	mm)		Mounting Bolt for Rail	Load	Static Load	١	atic Rat Momen		We	ight
Model No.		•																								Rating	Rating	M_R	M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	W _B	H_R	D	h	d	Р	Е	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
QWH17CA	17	2.5	8.5	50	29	10.5	15	38	51	13.95	2.45	4.9	M4x5	6	4	2.5	33	18	9.3	7.5	5.3	4.5	40	15	M4x12	7.32	9.1	0.14	0.055	0.055	0.12	2.2
QWH21CA	21	3	8.5	54	31	11.5	19	41.7	59	14.68	3.3	12	M5x6	8	4.5	4.2	37	22	11	7.5	5.3	4.5	50	15	M4x12	8.1	12.1	0.21	0.08	0.08	0.2	3
QWH27CA	27	4	10	62	46	8	32	56.6	73.2	15.45	3.15	12	M6x6	10	6	5	42	24	15	7.5	5.3	4.5	60	20	M4x16	16	22.2	0.42	0.2	0.2	0.35	4.7
QWH35CA	35	4	15.5	100	76	12	50	83	107	21.5	5	12	M8x8	13	8	6.5	69	40	19	11	9	7	80	20	M6x20	36.8	49.2	1.51	0.65	0.65	1.1	9.7

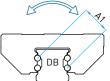
(2) QWW-CC

	of A	nensi sser	nbly					Dim	iensi	ons o	f Blo	ck (n	nm)					ı	Dim	ensi	ons (of Ra	ail (1	nm)		Mounting Bolt for Rail	Dynamic Load	Static Load	ı	atic Rat Momen		Wei	ight
Model No.			,																							rtuit	Rating	Rating	M_R	M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	W _R	W _B	H _R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
QWW17CC	17	2.5	13.5	60	53	3.5	26	38	51	8.45	2.45	4.9	M4	6	5.1	4	2.5	33	18	9.3	7.5	5.3	4.5	40	15	M4x12	7.32	9.1	0.14	0.055	0.055	0.13	2.2
QWW21CC	21	3	15.5	68	60	4	29	41.7	59	9.68	3.3	12	M5	7.3	8	4.5	4.2	37	22	11	7.5	5.3	4.5	50	15	M4x12	8.1	12.1	0.21	0.08	0.08	0.23	3
QWW27CC	27	4	19	80	70	5	40	56.6	73.2	11.45	3.15	12	М6	8	10	6	5	42	24	15	7.5	5.3	4.5	60	20	M4x16	16	22.2	0.42	0.2	0.2	0.43	4.7
QWW35CC	35	4	25.5	120	107	6.5	60	83	107	16.50	5	12	M8	11.2	14	8	6.5	69	40	19	11	9	7	80	20	M6x20	36.8	49.2	1.51	0.65	0.65	1.26	9.7

CG Series

Superior Rolling Moment with Cover Strip


2-8 CG Series - Superior Rolling Moment with Cover Strip Linear Guideway


CG series linear guideways are a four-row arc-tooth contact type, featuring high rigidity, high load, and high torsional resistance. It also has four-way load characteristics. This specification can be matched with the latest slide dustproof accessories.

2-8-1 Features of CG Series

(1) High rolling moment resistance

CG rail designed with DB type (also known as o arrangement) has longer range of moment compared to DF type (also known as x arrangement). It is sutiable for applications that have larger rolling moment.

Rigidity Test

0.3

0.25

- C625C-ZA

- H625C-ZA

0.15

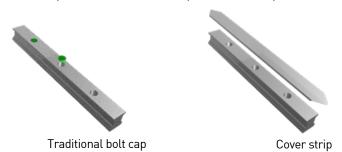
0.1

0.05

0.10

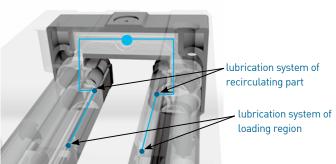
Applied Moment(N-m)

(2) Optimal recirculation path

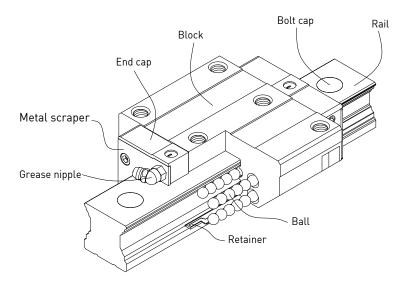

Better smoothness due to integrated component.

(3) Better protection

The CG series uses a metal scraper as a standard accessory for protection against high temperature chips and particles.


(4) Latest dustproof accessory for rail

The CG series offers a special stainless cover strip for better dust protection than standard bolt caps.

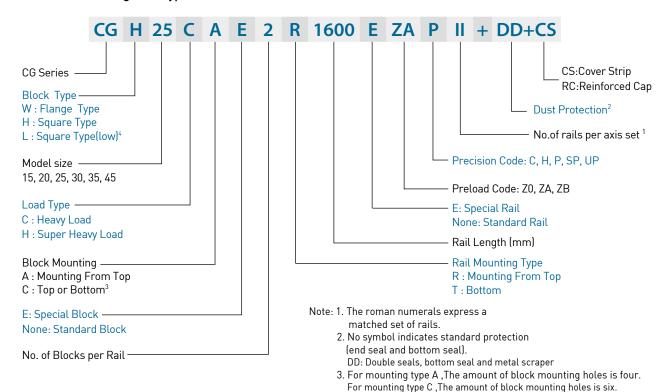


(5) Full lubrication

Specially designed for short stroke motion.

2-8-2 Construction of CG Series

- O Rolling circulation system: Block, Rail, End Cap and Retainer
- Lubrication system: Grease Nipple and Piping Joint
- O Dust protection system: End seal, Bottom Seal, Bolt Cap, Metal scraper


2-8-3 Model Number of CG Series

CG series guideways can be classified into non-interchangeable and interchangeable types. The sizes are identical. The only difference between the two types is that the interchangeable type of blocks and rails can be freely exchanged, and their accuracy can reach up to P class. The model number of CG series contains the size, type, accuracy class, preload class, etc..

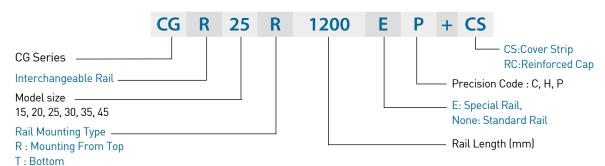
CG Series

Superior Rolling Moment with Cover Strip

(1) Non-interchangeable type

Both types can be mounting from top or bottom.

4. Block type CGL is the low profile design of CGH (square type),


the assembled height is same as CGW (flange type) in same size.

(2) Interchangeable type

Model Number of CG Block

CG H 25 C A E ZA P + DD Dust Protection² CG Series -Precision Code: C, H, P Block Type W: Flange Type Preload Code: Z0, ZA H: Square Type E: Special Block L : Square Type(low)⁴ None: Standard Block Model size -**Block Mounting Type** 15, 20, 25, 30, 35, 45 A: Mounting From Top Load Type -C: Top or Bottom C: Heavy Load H : Super Heavy Load

Model Number of CG Rail

2-8-4 Types

(1) Block types

There are two types of blocks: flange and square.

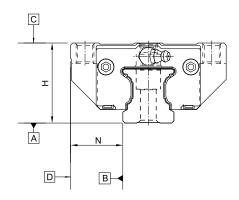
Table 2-8-1 Block Types

Type	Model	Shape	Height (mm)	Rail Length (mm)	Main Application
Square	CGH-CA CGH-HA		28 ↓ 70	100 ↓ 4000	 Machine Centers NC Lathes Grinding Machines Precision Machining Machines Heavy Cutting Machines
Square	CGL-CA CGL-HA		24 ↓ 60	100 ↓ 4000	 Automation Devices Transportation Equipment Measuring Equipment Devices Requiring High
Flange	CGW-CC CGW-HC		24 ↓ 60	100 ↓ 4000	Positional Accuracy
Flange	CGW-CA CGW-HA		24 ↓ 60	100 ↓ 4000	

(2) Rail types

Besides the standard top mounting type, the bottom mounting type is also available.

Table 2-8-2 Rail Types



CG Series

Superior Rolling Moment with Cover Strip

2-8-5 Accuracy Classes

The accuracy of CG series can be classified into five classes: normal (C), high (H), precision (P), super precision (SP), ultra precision (UP). Please choose the class by referring the accuracy of applied equipment.

(1) Accuracy of non-interchangeable guideways

Table 2-8-3 Accuracy Standards

Unit: mm

Item	CG - 15, 20				
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Dimensional tolerance of width N	± 0.1	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Variation of height H	0.02	0.01	0.006	0.004	0.003
Variation of width N	0.02	0.01	0.006	0.004	0.003
Running parallelism of block surface C to surface A			See Table 2-8-	.9	
Running parallelism of block surface D to surface B $$			See Table 2-8-	.9	

Table 2-8-4 Accuracy Standards

Unit: mm

Item	CG - 25, 30,	35			
Accuracy Classes	Normal (C)	High (н)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.02	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A			See Table 2-8-	.9	
Running parallelism of block surface D to surface B $$			See Table 2-8-	.9	

Table 2-8-5 Accuracy Standards

Unit: mm

Item	CG - 45				
Accuracy Classes	Normal (c)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Dimensional tolerance of width N	± 0.1	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Variation of height H	0.03	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.02	0.01	0.007	0.005
Running parallelism of block surface C to surface A			See Table 2-8-	-9	
Running parallelism of block surface D to surface B			See Table 2-8-	.9	

(2) Accuracy of interchangeable guideways

T.I. 2064 6. I.I.	
Table 2-8-6 Accuracy Standards	

Unit: mm

•			Offic. Hilli
Item	CG - 15, 20		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.03	± 0.015
Dimensional tolerance of width N	± 0.1	± 0.03	± 0.015
Variation of height H	0.02	0.01	0.006
Variation of width N	0.02	0.01	0.006
Running parallelism of block surface C to surface A		See Table 2-8-9	
Running parallelism of block surface D to surface B		See Table 2-8-9	

Table 2-8-7 Accuracy Standards

Unit: mm

Item	CG - 25, 30, 35		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.1	± 0.04	± 0.02
Variation of height H	0.02	0.015	0.007
Variation of width N	0.03	0.015	0.007
Running parallelism of block surface C to surface A		See Table 2-8-9	
Running parallelism of block surface D to surface B		See Table 2-8-9	

Table 2-8-8 Accuracy Standards

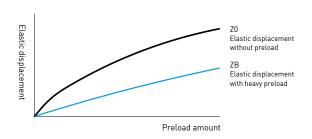
Unit: mm

Item	CG - 45		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.05	± 0.025
Dimensional tolerance of width N	± 0.1	± 0.05	± 0.025
Variation of height H	0.03	0.015	0.007
Variation of width N	0.03	0.02	0.01
Running parallelism of block surface C to surface A		See Table 2-8-9	
Running parallelism of block surface D to surface B		See Table 2-8-9	

CG Series

Superior Rolling Moment with Cover Strip

(3) Accuracy of running parallelism


Table 2-8-9 Accuracy of Running Parallelism

Rail Length (mm)	Accuracy (µm)				
,	С	Н	P	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7

2-8-6 Preload

(1) Definition

A preload can be applied to each guideway. Oversized balls are used. Generally, a linear motion guideway has a negative clearance between groove and balls in order to improve stiffness and maintain high precision. The figure shows the load is multiplied by the preload, the rigidity is doubled and the deflection is reduced by one half. The preload no larger than ZA would be recommended for the model size under HG20 to avoid an over-preload affecting the guideway's life.

(2) Preload classes

HIWIN offers three classes of standard preload for various applications and conditions.

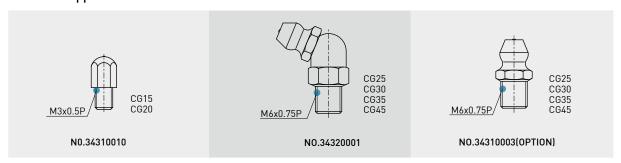
Table 2-8-10 Preload Classes

Class	Code	Preload	Condition	Examples of Application
Light Preload	Z 0	0~ 0.02C	Certain load direction, low impact, low precision required	Transportation devices, auto-packing machines, X-Y axis for general industrial machines, welding machines, welders
Medium Preload	ZA	0.05C~0.07C	High precision required	Machining centers, Z axis for general industrial, machines, EDM, NC lathes, Precision X-Y tables, measuring equipment
Heavy Preload	ZB	0.10C~ 0.12C	High rigidity required, with vibration and impact	Machining centers, grinding machines, NC lathes, horizontal and vertical milling machines, Z axis of machine tools, Heavy cutting machines
Class	Intercha	angeable Gui	deway	Non-Interchangeable Guideway
Preload classes	ZO, ZA			Z0, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

(3) Stiffness performance

Stiffness depends on preload. The following table shows stiffness value of each size.


Table 2-8-11 Radial stiffness for CG Series

Load type	Series / Size	Stiffness (N/µm)			
	Series / Size	Z0	ZA	ZB	
	CG 15C	180	341	482	
	CG 20C	258	540	701	
Heavelland	CG 25C	290	581	786	
Heavy load	CG 30C	342	595	907	
	CG 35C	378	606	950	
	CG 45C	443	634	999	
	CG 20H	331	716	918	
Super heavy load	CG 25H	351	720	969	
	CG 30H	449	802	1208	
	CG 35H	497	813	1269	
	CG 45H	587	842	1291	

2-8-7 Lubrication

(1) Grease

Grease nipple

Mounting location

The standard location of the grease fitting is at both ends of the block, but the nipple can be mounted at each side of block. For lateral installation, we recommend that the nipple can be mounted at the non-reference side, otherwise please contact us. It is possible to perform lubrication by using the oil-piping joint.

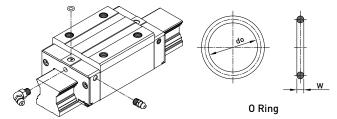
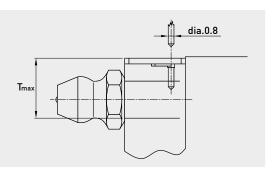



Table 2-8-12 O-Ring size and max. permissible depth for piercing

Size O-Ring			Lube hole at top: max. permissible depth for piercing
	do (mm)	W (mm)	T _{max} (mm)
CG15	2.5±0.15	1.5±0.15	3.75
CG20	4.5±0.15	1.5±0.15	5.7
CG25	4.5±0.15	1.5±0.15	5.8
CG30	4.5±0.15	1.5±0.15	6.3
CG35	4.5±0.15	1.5±0.15	8.8
CG45	4.5±0.15	1.5±0.15	8.2

CG Series

Superior Rolling Moment with Cover Strip

• The lubricant amount for a block filled with grease

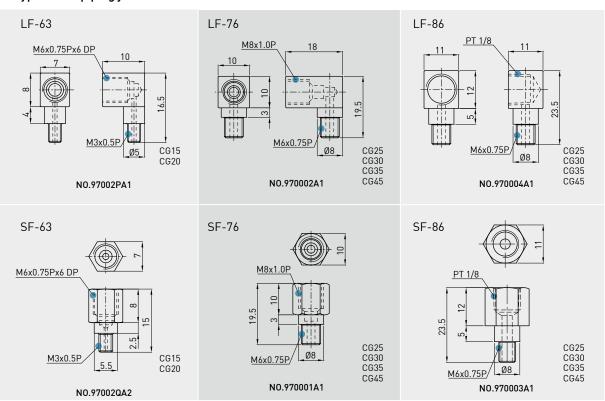
Table 2-8-13 The lubricant Amount for a Block Filled with Grease

Size	Heavy load (cm³)	Super Heavy load (cm³)	Size	Heavy load (cm³)	Super Heavy load (cm³)
CG15	1	-	CG30	3.5	5
CG20	2	3	CG35	7	9
CG25	2.5	4	CG45	8.5	-

Note: If other size is needed, please contact HIWIN.

• Frequency of replenishment

Table 2-8-14 Frequency of replenishment for one block


Recommended lubrication interval [km]					
Size	P/C < 0,1	0.1 < P/C < 0.3	Size	P/C < 0,1	0,1 < P/C < 0,3
CG15	3000	(C/P)*100	CG30	3000	(C/P)*100
CG20	3000	(C/P)*100	CG35	3000	(C/P)*100
CG25	3000	(C/P)*100	CG45	3000	(C/P)*100

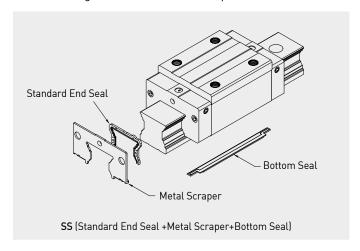
C: Dynamic rating P: Loading

(2) Oil

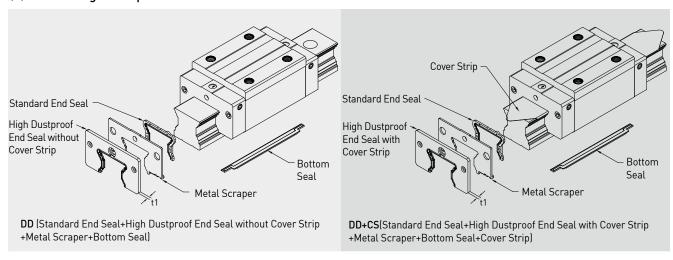
The recommended viscosity of oil is about 30~150cSt. If customers need to use oil-type lubrication, please inform us.

Types of oil piping joint

Oil refilling rate


Table 2-8-15

Size	Refilling rate (cm³/hr)	Size	Refilling rate (cm³/hr)
CG 15	0.2	CG 30	0.3
CG 20	0.2	CG 35	0.3
CG 25	0.3	CG 45	0.4


2-8-8 Dust Proof Accessories

(1) Codes of standard dust proof accessories

If the following accessories are needed, please add the code followed by the model number.

(2) Codes of high-dust proof accessories

(3) Function of dust proof accessories

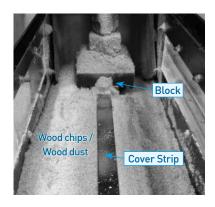
• End seal and bottom seal

To prevent life reduction caused by iron chips or dust entering the block.

Double seals

Enhances the wiping effect, foreign matter can be completely wiped off.

Table 2-8-16 Dimensions of end seal


Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
CG15	2.8	CG30	2.8
CG20	2.8	CG35	2.8
CG25	2.5	CG45	2.7

CG Series

Superior Rolling Moment with Cover Strip

Cover Strip

The cover strip offers better dust proof protection than rail bolt caps and is easier to install. The strip is held in place by a plastic retainer at each end. For high temperature environments a metal retainer is available.

Spec.	CGH25CA1R700Z0C+DD/CS
Max.velocity/ acceleration	1m/s,1G
Loading	Fixture weight
Distance	1500km
Dust type	Wood chips / Wood dust
Diameter	100~500μm

No dust get into ball tracks

Bolt caps for rail mounting holes

Caps are used to cover the mounting holes to prevent chips or other foreign objects from collecting in the holes. The caps will be enclosed in each rail package.

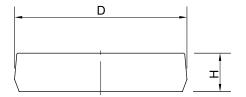


Table 2-8-17 Dimensions of Bolt Caps for Rail Mounting Holes

Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)	Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)
CGR15	M4	7.65	1.1	CGR30	M8	14.20	3.5
CGR20	M5	9.65	2.5	CGR35	M8	14.20	3.5
CGR25	M6	11.15	2.5	CGR45	M12	20.25	4.5

(4) Dimensions of block equipped with the parts

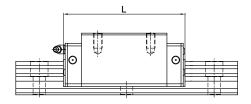


Table 2-8-18 Overall block length

unit: mm

C:	Overall block	k length (L)		C:	Overall block	(length (L)	
Size	SS	DD	DD+CS	Size	SS	DD	DD+CS
CG15C	58.2	63.8	63.8	-	-	-	-
CG20C	74.9	80.5	80.5	CG20H	90.9	96.5	96.5
CG25C	84	89	89	CG25H	101.4	106.4	106.4
CG30C	97.4	103.8	103	CG30H	119.9	126.3	125.5
CG35C	111.4	117.8	117	CG35H	135.8	142.2	141.4
CG45C	137.6	145.6	145.6	CG45H	174	182	182

2-8-9 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-8-19 Seal Resistance

Size	Resistance N (kgf)	Size	Resistance N (kgf)
CG15	0.98 (0.1)	CG30	3.43 (0.35)
CG20	1.96 (0.2)	CG35	3.92 (0.4)
CG25	3.43 (0.35)	CG45	4.9 (0.5)

Note : 1 kgf = 9.81N

Other specifications please contact HIWIN

2-8-10 The Accuracy Tolerance of Mounting Surface

CG rail designed with DB type (also known as o arrangement) which has better moment load capacity. Moreover, The CG series can compensate for some suface-error on installation and still maintain smooth linear motion due to circular-arc contact design.

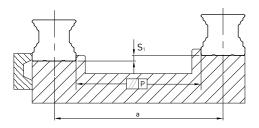


Table 2-8-20 Max. Parallelism Tolerance (P)

unit: µm

Size	Preload classes		
3126	Z 0	ZA	ZB
CG15	9	5	4
CG20	11	7	5
CG25	12	8	6
CG30	14	9	7
CG35	15	11	8
CG45	19	14	10

• The accuracy tolerance of reference surface height (S1)

 $S_1 = K \cdot 10^{(-4)} \cdot a - T_H$

S₁: Max. tolerance of height

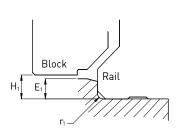
a: Distance between paired rails

K: Coefficient of tolerance of height

 T_{H} : dimensional tolerance of height, please refer to accuracy class

Table 2-8-21 Coefficient of tolerance of height

C:	Preload classes		
Size	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)
K [µm/mm]	2.8	1.7	1.2


CG Series

Superior Rolling Moment with Cover Strip

2-8-11 Cautions for Installation

(1) Shoulder heights and fillets

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

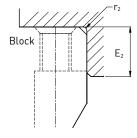


Table 2-8-22 Shoulder Heights and Fillets

Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
CG 15	0.5	0.5	3.0	4.0	4.3
CG 20	0.5	0.5	3.5	5.0	4.6
CG 25	1.0	1.0	5.0	5.0	5.5
CG 30	1.0	1.0	5.0	5.0	6.0
CG 35	1.0	1.0	6.0	6.0	7.5
CG 45	1.0	1.0	8.0	8.0	9.5

(2) Tightening Torque of Bolts for Installation

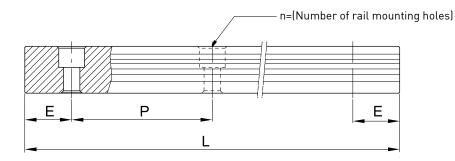

Improper tightening of bolts will seriously influence the accuracy of Linear Guideway installation. The following tightening torques for different sizes of bolts are recommended.

Table 2-8-23 Mounting Torque

Size	Bolt size	Torque N-cm (kgf-cm)		
3126	Bott Size	Iron	Casting	Aluminum
CG 15	M4×0.7P×16L	392(40)	274(28)	206(21)
CG 20	M5×0.8P×16L	883(90)	588(60)	441(45)
CG 25	M6×1P×20L	1373(140)	921(94)	686(70)
CG 30	M8×1.25P×25L	3041(310)	2010(205)	1470(150)
CG 35	M8×1.25P×25L	3041(310)	2010(205)	1470(150)
CG 45	M12×1.75P×35L	11772(1200)	7840(800)	5880(600)

2-8-12 Standard and Maximum Lengths of Rail

HIWIN offers standard rail lengths for customer needs. For non-standard E-values, the recommended dimension should not be greater than 1/2 of the pitch (P) dimension. This will prevent an unstable rail end.

$$L = (n-1) \times P + 2 \times E$$
 Eq. 2.1

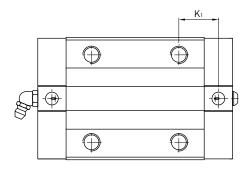
- L: Total length of rail (mm)
- n: Number of mounting holes
- P: Distance between any two holes (mm)
- E: Distance from the center of the last hole to the edge (mm)

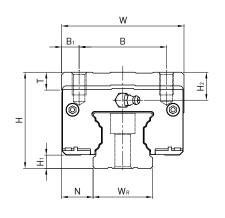
Table 2-8-24 Rail Standard Length and Max. Length

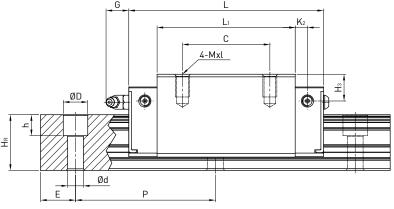
unit: mm

CG15		_	_				unit. min
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Item	CG15	CG20	CG25	CG30	CG35	CG45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		160(3)	220(4)	220(4)	280(4)	280(4)	570(6)
Standard Length L(n) 340(6) 460(8) 460(8) 760(10) 760(10) 1,620(16) Standard Length L(n) 460(8) 640(11) 640(11) 1,000(13) 1,000(13) 2,040(20) 640(11) 820(14) 820(14) 1,640(21) 1,640(21) 2,460(24) 820(14) 1,000(17) 1,000(17) 2,040(26) 2,040(26) 2,985(29) 1,240(21) 1,240(21) 2,520(32) 2,520(32) 2,520(32) 1,600(27) 3,000(38) 3,000(38) 3,000(38) Pitch (P) 60 60 80 80 105 Distance to End (E _s) 20 20 20 20 22.5 Max. Standard Length 4,000(67) 4,000(67) 4,000(67) 3,960(50) 3,960(50) 3,930(38)		220(4)	280(5)	280(5)	440(6)	440(6)	885(9)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		280(5)	340(6)	340(6)	600(8)	600(8)	1,200(12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		340(6)	460(8)	460(8)	760(10)	760(10)	1,620(16)
820(14) 1,000(17) 1,000(17) 2,040(26) 2,040(26) 2,985(29) 1,240(21) 1,240(21) 2,520(32) 2,520(32) 1,600(27) 3,000(38) 3,000(38) Pitch (P) 60 60 80 80 105 Distance to End (Es) 20 20 20 20 22.5 Max. Standard Length 4,000(67) 4,000(67) 3,960(50) 3,960(50) 3,930(38)	Standard Length L(n)	460(8)	640(11)	640(11)	1,000(13)	1,000(13)	2,040(20)
Pitch (P) 60 60 60 80 80 105 Distance to End (E _s) 20 20 20 20 20 20 20 22.5 Max. Standard Length 4,000(67) 4,000(67) 4,000(67) 3,960(50) 3,960(50) 3,930(38)		640(11)	820(14)	820(14)	1,640(21)	1,640(21)	2,460(24)
Pitch (P) 60 60 60 80 80 105 Distance to End (E _s) 20 20 20 20 20 22.5 Max. Standard Length 4,000(67) 4,000(67) 4,000(67) 3,960(50) 3,960(50) 3,930(38)		820(14)	1,000(17)	1,000(17)	2,040(26)	2,040(26)	2,985(29)
Pitch (P) 60 60 60 80 80 105 Distance to End (E _s) 20 20 20 20 20 22.5 Max. Standard Length 4,000(67) 4,000(67) 4,000(67) 3,960(50) 3,960(50) 3,930(38)			1,240(21)	1,240(21)	2,520(32)	2,520(32)	
Distance to End (E _s) 20 20 20 20 20 20 22.5 Max. Standard Length 4,000(67) 4,000(67) 4,000(67) 3,960(50) 3,960(50) 3,930(38)				1,600(27)	3,000(38)	3,000(38)	
Max. Standard Length 4,000(67) 4,000(67) 3,960(50) 3,960(50) 3,930(38)	Pitch (P)	60	60	60	80	80	105
	Distance to End (E _s)	20	20	20	20	20	22.5
Max. Length 4,000 4,000 4,000 4,000 4,000	Max. Standard Length	4,000(67)	4,000(67)	4,000(67)	3,960(50)	3,960(50)	3,930(38)
	Max. Length	4,000	4,000	4,000	4,000	4,000	4,000

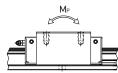
Note: 1. Tolerance of E value for standard rail is $0.5 \sim -0.5$ mm. Tolerance of E value for jointed rail is $0 \sim -0.3$ mm.

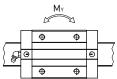

- 2. Maximum standard length means the max. rail length with standard E value on both sides.
- 3. If different E value is needed, please contact HIWIN.

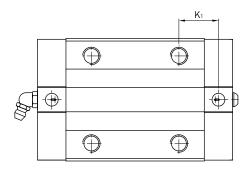

CG Series

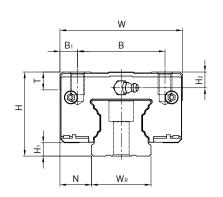

Superior Rolling Moment with Cover Strip

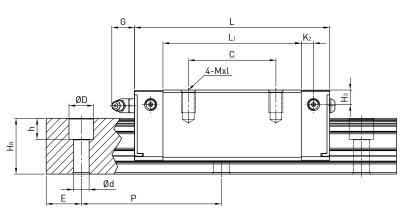
2-8-13 Dimensions for HIWIN CG Series


(1) CGH-CA / CGH-HA

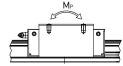


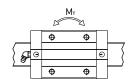


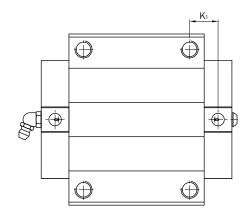


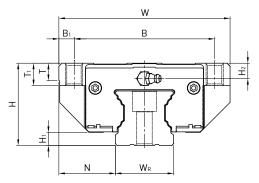


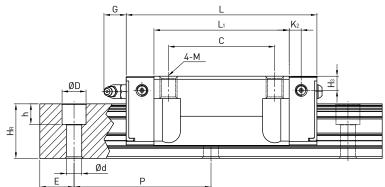
Model	of A		mbly					Dir	mensi	ons	of Blo	ck (r	nm)				ı	Dimen	sion	s of	Rail	(mm	ı)	Mounting Bolt for	Basic Dynamic Load	Basic Static Load		atic Rat Momen		We	ight
No.		(mm	1)																					Rail	Rating	Rating	M_R	M_{P}	$M_{\scriptscriptstyle Y}$	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	G	K ₁	\mathbf{K}_2	T	H ₂	H ₃	Mxl	\mathbf{W}_{R}	H_{R}	D	h	d	Р	Ε	(mm)	C (kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
CGH15CA	28	4.1	9.5	34	26	4	26	39.6	58.2	6	10.8	4.25	6	7.8	7.8	M4 x 6	15	16.2	7.5	5.9	4.5	60	20	M4x17	14.7	19.52	0.19	0.14	0.14	0.15	1.58
CGH20CA	30	4.65	12	44	32	6	36	52.5	74.9	6	12.45	5.5	8	3.7	4	M5 x 6	20	20.55	9.5	8.5	6	60	20	M5x19	23.7	30.51	0.37	0.28	0.28	0.25	2.48
CGH20HA	30	4.65	12	44	32	6	50	68.5	90.9	6	13.45	5.5	8	3.7	4	M5 x 6	20	20.55	9.5	8.5	6	60	20	MIDXIT	28.6	39.9	0.48	0.48	0.48	0.33	2.48
CGH25CA	40	6.1	12.5	48	35	6.5	35	61	84	13	17.4	5	8	10	9.1	M6 x 8	23	24.25	11	9	7	60	20	M6x22	34.96	43.94	0.6	0.49	0.49	0.46	3.38
CGH25HA	40	6.1	12.5	48	35	6.5	50	78.4	101.4	13	18.6	5	8	10	9.1	M6 x 8	23	24.25	11	9	7	60	20	MOXZZ	40.5	54.08	0.74	0.73	0.73	0.59	3.38
CGH30CA	45	7	16	60	40	10	40	69	97.4	13	19.75	8.7	9.5	9.7	9.7	M8 x 10	28	28.35	14	12	9	80	20	M8x25	46	55.19	0.95	0.7	0.7	0.71	5.1
CGH30HA	45	7	16	60	40	10	60	91.5	119.9	13	21	8.7	9.5	9.7	9.7	M8 x 10	28	28.35	14	12	9	80	20	MOXZO	58.59	78.18	1.35	1.23	1.23	0.94	5.1
CGH35CA	55	7.6	18	70	50	10	50	79	111.4	13	22.6	7	10.2	16	15.3	M8 x 13	34	31.85	14	12	9	80	20	M8x28	61.17	79.3	1.73	1.09	1.09	1.24	7.14
CGH35HA	55	7.6	18	70	50	10	72	103.4	135.8	13	23.8	7	10.2	16	15.3	M8 x 13	34	31.85	14	12	9	80	20	IVIOXZ0	77.9	112.34	2.46	2.02	2.02	1.62	7.14
CGH45CA	70	9.7	20.5	86	60	13	60	97.2	137.6	13	23	8.7	16	18.5	18.5	M10 x 17	45	39.85	20	17	14	105	22.5	M12x37	98.43	112.66	3.56	2.35	2.35	2.38	11.51
CGH45HA	70	9.7	20.5	86	60	13	80	133.6	174	13	31.2	8.7	16	18.5	18.5	M10 x 17	45	39.85	20	17	14	105	22.5	MIZX3/	125.58	159.6	5.05	4.45	4.45	3.01	11.51


(2) CGL-CA / CGL-HA

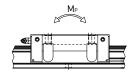


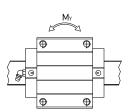


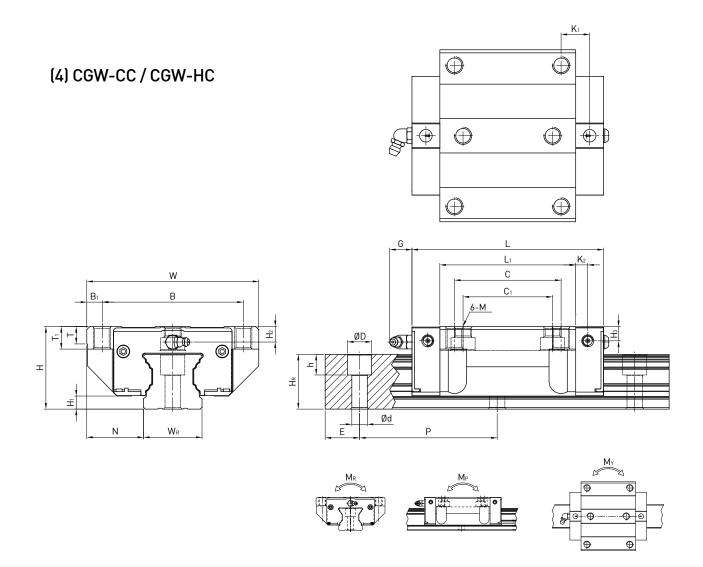

Model	Model No. Dimensions of Assembly (mm)							Din	nensio	ns o	of Blo	ck (r	nm)				ı	Dimen	sion	s of	Rail	(mm	n)	Mounting Bolt for Rail	Basic Dynamic Load	Basic Static Load	St	atic Rat Momen		We	ight
No.																									Rating		1*1R	M _P			Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	G	K ₁	K ₂	Т	H ₂	Нз	Mxl	W _R	H _R	D	h	d	Р	Ε	(mm)	C (kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
CGL15CA	24	4.1	9.5	34	26	4	26	39.6	58.2	6	10.8	4.25	6	3.8	3.8	M4x6	15	16.2	7.5	5.9	4.5	60	20	M4x17	14.7	19.52	0.19	0.14	0.14	0.11	1.58
CGL25CA	36	6.1	12.5	48	35	6.5	35	61	84	13	17.4	5	8	6	5.1	M6x8	23	24.25	11	9	7	60	20	M6x22	34.96	43.94	0.6	0.49	0.49	0.37	3.38
CGL25HA	36	6.1	12.5	48	35	6.5	50	78.4	101.4	13	18.6	5	8	6	5.1	M6x8	23	24.25	11	9	7	60	20	MOXZZ	40.5	54.08	0.74	0.73	0.73	0.47	3.38
CGL30CA	42	7	16	60	40	10	40	69	97.4	13	19.75	8.7	9.5	6.7	6.7	M8x10	28	28.35	14	12	9	80	20	M8x25	46	55.19	0.95	0.7	0.7	0.61	5.1
CGL30HA	42	7	16	60	40	10	60	91.5	119.9	13	21	8.7	9.5	6.7	6.7	M8x10	28	28.35	14	12	9	80	20	MOXZJ	58.59	78.18	1.35	1.23	1.23	0.82	5.1
CGL35CA	48	7.6	18	70	50	10	50	79	111.4	13	22.6	7	10.2	9	8.3	M8x13	34	31.85	14	12	9	80	20	M8x28	61.17	79.3	1.73	1.09	1.09	0.93	7.14
CGL35HA	48	7.6	18	70	50	10	72	103.4	135.8	13	23.8	7	10.2	9	8.3	M8x13	34	31.85	14	12	9	80	20	MOXZO	77.9	112.34	2.46	2.02	2.02	1.22	7.14
CGL45CA	60	9.7	20.5	86	60	13	60	97.2	137.6	13	23	8.7	16	8.5	8.5	M10x17	45	39.85	20	17	14	105	22.5	M12x37	98.43	112.66	3.56	2.35	2.35	1.72	11.51
CGL45HA	60	9.7	20.5	86	60	13	80	133.6	174	13	31.2	8.7	16	8.5	8.5	M10x17	45	39.85	20	17	14	105		14112.837	125.58	159.6	5.05	4.45	4.45	2.39	11.51

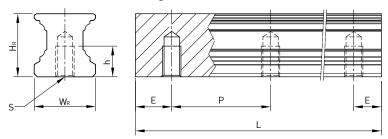

CG Series

Superior Rolling Moment with Cover Strip



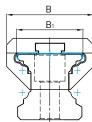


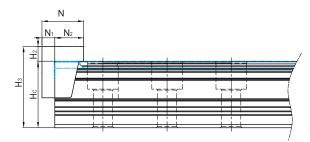




Model		nens Asser (mm	nbly					Dim	nensio	ons (of Blo	ck (r	nm)					D	imens	sions	of F	Rail	(mm)) I	ounting Bolt for Rail	Basic Dynamic Load	Load		atic Ra Momen		We	eight
No.		•	•																							Rating	Rating	M_R	M_P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	G	K ₁	K ₂	Т	T ₁	H ₂	H ₃	М	W _R	H _R	D	h	d	Р	Е	(mm)	C (kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
CGW15CA	24	4.1	16	47	38	4.5	30	39.6	58.2	6	8.8	4.25	6	6.5	3.8	3.8	M5	15	16.2	7.5	5.9	4.5	60	20	M4x17	14.7	19.52	0.19	0.14	0.14	0.14	1.58
CGW20CA	30	4.65	21.5	63	53	5	40	52.5	74.9	6	10.45	5.5	6.5	7.7	3.7	4	M6	20	20.55	9.5	8.5	6	60	20	M5x19	23.7	30.51	0.37	0.28	0.28	0.36	2.48
CGW20HA	30	4.65	21.5	63	53	5	40	68.5	90.9	6	18.45	5.5	6.5	7.7	3.7	4	M6	20	20.55	9.5	8.5	6	60	20	MJX 17	28.6	39.9	0.48	0.48	0.48	0.47	2.48
CGW25CA	36	6.1	23.5	70	57	6.5	45	61	84	13	12.4	5	7	9.3	6	5.1	M8	23	24.25	11	9	7	60	20	M4v22	34.96	43.94	0.6	0.49	0.49	0.53	3.38
CGW25HA	36	6.1	23.5	70	57	6.5	45	78.4	101.4	13	21.1	5	7	9.3	6	5.1	M8	23	24.25	11	9	7	60	20	M6x22	40.5	54.08	0.74	0.73	0.73	0.68	3.38
CGW30CA	42	7	31	90	72	9	52	69	97.4	13	13.75	8.7	10.5	12	6.7	6.7	M10	28	28.35	14	12	9	80	20	M8x25	46	55.19	0.95	0.7	0.7	0.9	5.1
CGW30HA	42	7	31	90	72	9	52	91.5	119.9	13	25	8.7	10.5	12	6.7	6.7	M10	28	28.35	14	12	9	80		MOXES	58.59	78.18	1.35	1.23	1.23	1.19	5.1
CGW35CA	48	7.6	33	100	82	9	62	79	111.4	13	16.6	7	10.1	13.1	9	8.3	M10	34	31.85	14	12	9	80	20	M8x28	61.17	79.3	1.73	1.09	1.09	1.37	7.14
CGW35HA	48	7.6	33	100	82	9	62	103.4	135.8	13	28.8	7	10.1	13.1	9	8.3	M10	34	31.85	14	12	9	80		1.10.20	77.9	112.34	2.46	2.02	2.02	1.79	7.14
CGW45CA	60	9.7	37.5	120	100	10	80	97.2	137.6	13	13	8.7	13.5	15	8.5	8.5	M12	45	39.85	20	17	14	105 2		M12x37	98.43	112.66	3.56	2.35	2.35	2.45	11.51
CGW45HA	60	9.7	37.5	120	100	10	80	133.6	174	13	31.2	8.7	13.5	15	8.5	8.5	M12	45	39.85	20	17	14	105 2		14112.837	125.58	159.6	5.05	4.45	4.45	3	11.51

	of A	nens Asser	nbly						Dime	ensior	ns of	Block	(mr	n)					Dimensions of Rail (mm)			Mounting Bolt for	Basic Dynamic Load	Basic Static Load	Static Nateu			Weight					
Model No.		(mm]																							Rail	Rating		M_R	M _P	M_{Y}	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	C ₁	L ₁	L	G	K ₁	K ₂	Т	T ₁	H ₂	H ₃	М	W _R	H _R	D	h	d	Р	Ε	(mm)	C (kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
CGW15CC	24	4.1	16	47	38	4.5	30	26	39.6	58.2	6	8.8	4.25	6	6.5	3.8	3.8	M5	15	16.2	7.5	5.9	4.5	60	20	M4x17	14.7	19.52	0.19	0.14	0.14	0.14	1.58
CGW20CC	30	4.65	21.5	63	53	5	40	35	52.5	74.9	6	10.45	5.5	6.5	7.7	3.7	4	M6	20	20.55	9.5	8.5	6	60	20	M5x19	23.7	30.51	0.37	0.28	0.28	0.36	2.48
CGW20HC	30	4.65	21.5	63	53	5	40	35	68.5	90.9	6	18.45	5.5	6.5	7.7	3.7	4	M6	20	20.55	9.5	8.5	6	60	20	MOXIY	28.6	39.9	0.48	0.48	0.48	0.47	2.48
CGW25CC	36	6.1	23.5	70	57	6.5	45	40	61	84	13	12.4	5	7	9.3	6	5.1	M8	23	24.25	11	9	7	60	20	M6x22	34.96	43.94	0.6	0.49	0.49	0.53	3.38
CGW25HC	36	6.1	23.5	70	57	6.5	45	40	78.4	101.4	13	21.1	5	7	9.3	6	5.1	M8	23	24.25	11	9	7	60	20	MOXZZ	40.5	54.08	0.74	0.73	0.73	0.68	3.38
CGW30CC	42	7	31	90	72	9	52	44	69	97.4	13	13.75	8.7	10.5	12	6.7	6.7	M10	28	28.35	14	12	9	80	20	M8x25	46	55.19	0.95	0.7	0.7	0.9	5.1
CGW30HC	42	7	31	90	72	9	52	44	91.5	119.9	13	25	8.7	10.5	12	6.7	6.7	M10	28	28.35	14	12	9	80	20	MOXZJ	58.59	78.18	1.35	1.23	1.23	1.19	5.1
CGW35CC	48	7.6	33	100	82	9	62	52	79	111.4	13	16.6	7	10.1	13.1	9	8.3	M10	34	31.85	14	12	9	80	20	M8x28	61.17	79.3	1.73	1.09	1.09	1.37	7.14
CGW35HC	48	7.6	33	100	82	9	62	52	103.4	135.8	13	28.8	7	10.1	13.1	9	8.3	M10	34	31.85	14	12	9	80	20	MOXZØ	77.9	112.34	2.46	2.02	2.02	1.79	7.14
CGW45CC	60	9.7	37.5	120	100	10	80	60	97.2	137.6	13	13	8.7	13.5	15	8.5	8.5	M12	45	39.85	20	17	14	105	22.5	M12x37	98.43	112.66	3.56	2.35	2.35	2.45	11.51
CGW45HC	60	9.7	37.5	120	100	10	80	60	133.6	174	13	31.2	8.7	13.5	15	8.5	8.5	M12	45	39.85	20	17	14	105	22.5	1411783/	125.58	159.6	5.05	4.45	4.45	3	11.51

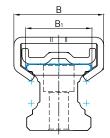

(5) Dimesions for CGR-T (Rail Mounting from Bottom)

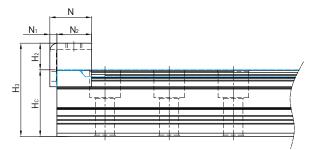


Size	Dimensions of Rail	Dimensions of Rail (mm)										
	W_R	H _R	S	h	Р	Е						
CGR15T	15	16.2	M5X0.8P	8	60	20						
CGR20T	20	20.55	M6X1P	10	60	20						
CGR25T	23	24.25	M6X1P	12	60	20						
CGR30T	28	28.35	M8X1.25P	15	80	20						
CGR35T	34	31.85	M8X1.25P	17	80	20						
CGR45T	45	39.85	M12X1.75P	24	105	22.5						

(6) Dimension of cover strip and plastic end jig

o plastic end jig (standard)





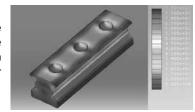
Size	H ₃	H _c ¹	H ₂	N	N_1	N_2	В	B ₁
CG 15	20.8	16.4	4.4	13.0	3.7	9.3	20.0	15.8
CG 20	25.65	20.75	4.9	13.0	4.0	9.0	27.0	20.7
CG 25	29.55	24.45	5.1	15.0	4.2	10.8	31.5	23.9
CG 30	35.45	28.55	6.9	21.0	6.0	15.0	40.0	28.9
CG 35	40.75	32.05	8.7	21.5	6.2	15.3	46.0	34.8
CG 45	48.3	40.05	8.25	22.0	6.2	15.8	51.6	45.6

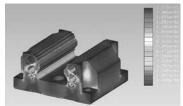
Note : 1. Dimension $H_{\mathbb{C}}$ with cover strip

Metal end jig (optional)

Size	H ₃	H _c ¹	H ₂	N	N ₁	N ₂	В	B ₁
CG 15	20.09	16.4	3.69	15.0	2.2	12.8	21.0	15.8
CG 20	29.05	20.75	8.3	13.0	2.2	10.8	28.0	20.7
CG 25	34.42	24.45	9.97	15.0	2.2	12.8	30.6	23.9
CG 30	37.80	28.55	9.25	12.0	2.2	9.8	34.0	28.9
CG 35	43.2	32.05	11.15	18.0	2.2	15.8	35.4	34.8
CG 45	52.66	40.05	12.61	18.0	2.2	15.8	53.6	45.6

Note : 1. Dimension $H_{\mathbb{C}}$ with cover strip


2-9 RG Series – High Rigidity Roller Type Linear Guideway


2-9-1 Advantages and features

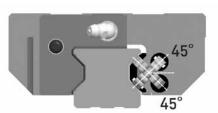
The new RG series from Hiwin features a roller as the rolling element instead of steel balls. The roller series offers super high rigidity and very high load capacities. The RG series is designed with a 45-degree angle of contact. Elastic deformation of the linear contact surface, during load, is greatly reduced thereby offering greater rigidity and higher load capacities in all 4 load directions. The RG series linear guideway offers high performance for high-precision manufacturing and achieving longer service life.

(1) Optimal design

FEM analysis was performed to determine the optimal structure of the block and the rail. The unique design of the circulation path allows the RG series linear guideway to offer smoother linear motion.

(2) Super high rigidity

The RG series is a type of linear guideway that uses rollers as the rolling elements. Rollers have a greater contact area than balls so that the roller guideway features higher load capacity and greater rigidity. The figure shows the rigidity of a roller and a ball with equal volume.


(3) Super high load capacity

With the four rows of rollers arranged at a contact angle of 45-degrees, the RG series linear guideway has equal load ratings in the radial, reverse radial and lateral directions. The RG series has a higher load capacity in a smaller size than conventional, ball-type linear guideways.

Deformation of Diameter (μm) Lateral Load(kN)

(4) Operating life increased

Compare with the ball element, the contact pressure of rolling element is distributed on the line region. Therefore, stress concentration was reduced significantly and the RG series offers longer running life. The nominal life of RG series can be calculated by using Eq.

The acting load will affect the nominal life of a linear guideway. Based on the selected basic dynamic rated load and the actual load. The nominal life of ball type and roller type linear guideway can be calculated by Eq.2.5 respectively.

$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} \cdot 100 \text{km} = \left(\frac{C}{P}\right)^{\frac{10}{3}} \cdot 62 \text{mile}$$
 Eq. 2.5

If the environmental factors are taken into consideration, the nominal life is influenced greatly by the motion conditions, the hardness of the raceway, and the temperature of the linear guideway. The relationship between these factors is expressed in Eq.2.6.

$$L = \left(\frac{f_h \cdot f_t \cdot C}{f_w \cdot P}\right)^{\frac{10}{3}} 100 \text{km} = \left(\frac{f_h \cdot f_t \cdot C}{f_w \cdot P}\right)^{\frac{10}{3}} 62 \text{mile}$$
 Eq. 2.6

L : Nominal life C : Basic dynamic load rating f_h : Hardness factor f_t : Temperature factor

P : Actual load

fw: Load factor

High Rigidity Roller Type

(5) Test Data

1. Nominal life test

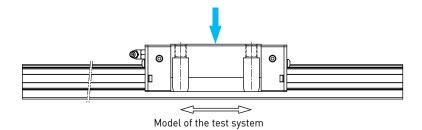


Table 2-9-1

Tested model 1: RGH35CA

Preload: ZA class Max. Speed: 60m/min Acceleration: 1G Stroke: 0.55m

Lubrication: grease held every 100km

External load: 15kN Traveling distance: 1135km

Test results:

The nominal life of RGH35CA is 1000km. After traveling 1135km, fatigue flaking did not appear on the surface of the raceway or rollers.

2. Durability Test

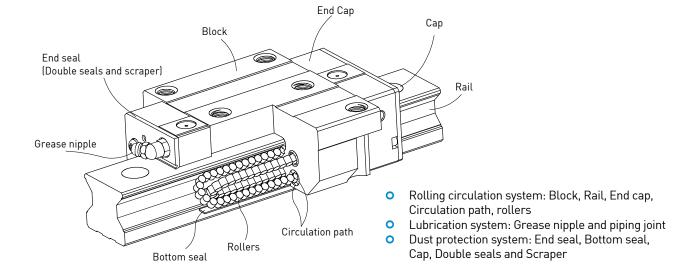
Tested model 2: RGW35CC

Preload: ZA class Max. Speed: 120m/min Acceleration: 1G Stroke: 2m

Lubrication: oil feed rate: 0.3cm³/hr

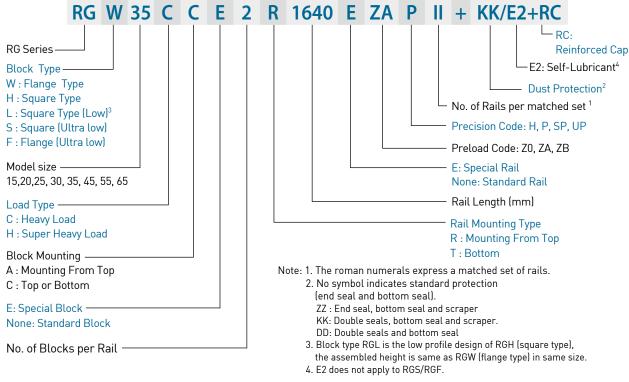
External load: 0kN

Traveling distance: 15000km

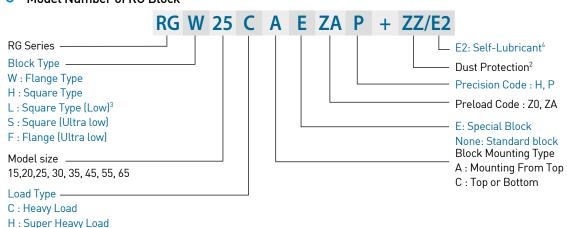

Test results:

Fatigue flaking did not appear on the surface of the raceway or rollers after traveling 15000km.

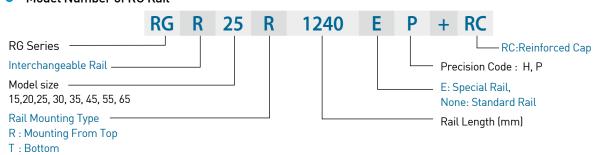
Note: The data listed are from samples.


2-9-2 Construction of RG Series

2-9-3 Model Number of RG series


RG series linear quideways are classified into non-interchangeable and interchangeable types. The sizes of these two types are the same as one another. The main difference is that the interchangeable type of blocks and rails can be freely exchanged and they can maintain P-class accuracy. Because of strict dimensional control, the interchangeable type linear guideways are a wise choice for customers when rails do not need to be matched for an axis. The model number of the RG series identifies the size, type, accuracy class, preload class, etc.

(1) Non-interchangeable type



(2) Interchangeable type

Model Number of RG Block

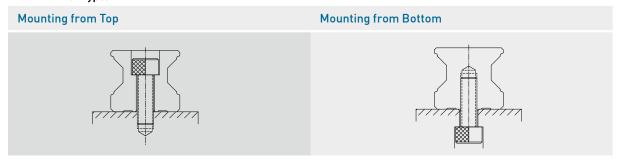
Model Number of RG Rail

High Rigidity Roller Type

2-9-4 Types

(1) Block types

HIWIN offers two types of guide blocks, flange and square type. Because of the low assembly height and large mounting surface, the flange type is excellent for heavy moment load applications.


Table 2-9-2 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	RGH-CA RGH-HA		28 ↓ 90	100 ↓ 4000	 Automation Systems Transportation equipment CNC machining centers Heavy duty cutting machines
Square (low)	RGL-CA RGL-HA		24 ↓ 70	100 ↓ 4000	 CNC grinding machines Injection molding machines Plano millers Devices requiring high rigidity Devices requiring high load
Square (Ultra low)	RGS-CA RGS-HA		44 ↓ 52	100 ↓ 4000	capacity • Electric discharge machines
Flange	RGW-CC RGW-HC		24 ↓ 90	100 ↓ 4000	
Flange (Ultra low)	RGF-CC RGF-HC		44 ↓ 52	100 ↓ 4000	

(2) Rail types

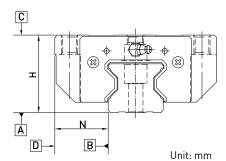

In addition to the standard top mounting type, HIWIN also offers the bottom mounting type of rails.

Table 2-9-3 Rail Types

2-9-5 Accuracy Classes

The accuracy of the RG series can be classified into four classes: high (H), precision (P), super precision (SP) and ultra precision (UP). Customers may choose the class by referencing the accuracy requirements of the applied equipment.

(1) Accuracy of non-interchangeable

Table 2-9-4 Accuracy Standards

ŕ						
Item	RG - 15, 20					
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)		
Dimensional tolerance of height H	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008		
Dimensional tolerance of width N	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008		
Variation of height H	0.01	0.006	0.004	0.003		
Variation of width N	0.01	0.006	0.004	0.003		
Running parallelism of block surface C to surface A	See Table 2-9-12					
Running parallelism of block surface D to surface B	See Table 2-9-12					

Table 2-9-5 Accuracy Standards

U	nit:	mn

Item	RG - 25, 30, 3	5				
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)		
Dimensional tolerance of height H	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01		
Dimensional tolerance of width N	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01		
Variation of height H	0.015	0.007	0.005	0.003		
Variation of width N	0.015	0.007	0.005	0.003		
Running parallelism of block surface C to surface A	See Table 2-9-12					
Running parallelism of block surface D to surface B	See Table 2-9-12					

High Rigidity Roller Type

Table 2-9-6 Accuracy Standards

Item	RG - 45, 55			
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Dimensional tolerance of width N	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Variation of height H	0.015	0.007	0.005	0.003
Variation of width N	0.02	0.01	0.007	0.005
Running parallelism of block surface C to surface A		See	Table 2-9-12	
Running parallelism of block surface D to surface B		See	e Table 2-9-12	

Table 2-9-7 Accuracy Standards

Unit: mm

Item	RG - 65					
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)		
Dimensional tolerance of height H	± 0.07	0 - 0.07	0 - 0.05	0 - 0.03		
Dimensional tolerance of width N	± 0.07	0 - 0.07	0 - 0.05	0 - 0.03		
Variation of height H	0.02	0.01	0.007	0.005		
Variation of width N	0.025	0.015	0.01	0.007		
Running parallelism of block surface C to surface A	sm of block surface C to surface A See Table 2-9-12					
Running parallelism of block surface D to surface B	See Table 2-9-12					

(2) Accuracy of interchangeable

Table 2-9-8 Accuracy Standards

Unit: mm

Item	RG - 15, 20			
Accuracy Classes	High (H)	Precision (P)		
Dimensional tolerance of height H	± 0.03	± 0.015		
Dimensional tolerance of width N	± 0.03	± 0.015		
Variation of height H	0.01	0.006		
Variation of width N	0.01	0.006		
Running parallelism of block surface C to surface A	See Table 2-9-12			
Running parallelism of block surface D to surface B	See Table 2-9-12			

Table 2-9-9 Accuracy Standards

Unit: mm

Item	RG - 25, 30, 35	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.04	± 0.02
Variation of height H	0.015	0.007
Variation of width N	0.015	0.007
Running parallelism of block surface C to surface A	See Ta	ble 2-9-12
Running parallelism of block surface D to surface B $$	See Ta	ble 2-9-12

Table 2-9-10 Accuracy Standards

Unit: mm

Item	RG - 45, 55	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.05	± 0.025
Dimensional tolerance of width N	± 0.05	± 0.025
Variation of height H	0.015	0.007
Variation of width N	0.02	0.01
Running parallelism of block surface C to surface A	Se	ee Table 2-9-12
Running parallelism of block surface D to surface B	Se	ee Table 2-9-12

Table 2-9-11 Accuracy Standards

Unit: mm

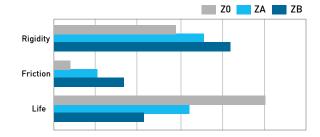
Item	RG - 65	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.07	± 0.035
Dimensional tolerance of width N	± 0.07	± 0.035
Variation of height H	0.02	0.01
Variation of width N	0.025	0.015
Running parallelism of block surface C to surface A	See T	able 2-9-12
Running parallelism of block surface D to surface B	See T	able 2-9-12

(3) Accuracy of running parallelism

Table 2-9-12 Accuracy of Running Parallelism

	5			
Rail Length (mm)	Accuracy (µm)			
Kait Length (IIIII)	Н	Р	SP	UP
~ 100	7	3	2	2
100 ~ 200	9	4	2	2
200 ~ 300	10	5	3	2
300 ~ 500	12	6	3	2
500 ~ 700	13	7	4	2
700 ~ 900	15	8	5	3
900 ~ 1,100	16	9	6	3
1,100 ~ 1,500	18	11	7	4
1,500 ~ 1,900	20	13	8	4
1,900 ~ 2,500	22	15	10	5
2,500 ~ 3,100	25	18	11	6
3,100 ~ 3,600	27	20	14	7
3,600 ~ 4,000	28	21	15	7

High Rigidity Roller Type


2-9-6 Preload

A preload can be applied to each guideway using oversized rollers. Generally, a linear motion guideway has negative clearance between the raceway and rollers to improve stiffness and maintain high precision. The RG series linear guideway offers three standard preloads for various applications and conditions.

Table 2-9-13

Table 2-5-13			
Class	Code	Preload	Condition
Light Preload	Z 0	0.02C~ 0.04C	Certain load direction, low impact, low precision required
Medium Preload	ZA	0.07C~0.09C	High rigidity required, high precision required
Heavy Preload	ZB	0.12C~ 0.14C	Super high rigidity required, with vibration and impact

The figure shows the relationship between the rigidity, friction and nominal life. A preload no larger than ZA would be recommended for smaller model sizes to avoid over-preload affecting the life of the guideway.

Stiffness performance

Stiffness depends on preload. The following table shows stiffness value of each size.

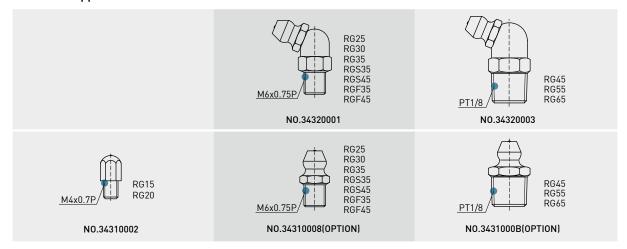

Table 2-9-14 Radial stiffness for RG Series

Table 2-9-14 Radial Stiffless for Rd Series						
Load type	Series / Size	Stiffness (N/µm)				
Load type		Z0	ZA	ZB		
	RG 15C	508	727	788		
	RG 20C	625	853	950		
	RG 25C	692	954	1196		
Heavy load	RG 30C	882	1082	1333		
riedvy todu	RG 35C	1059	1247	1547		
	RG 45C	1642	1851	2332		
	RG 55C	1784	2053	2506		
	RG 65C	2564	2900	3482		
	RG 20H	840	1160	1279		
	RG 25H	887	1242	1549		
	RG 30H	1125	1391	1711		
Super heavy load	RG 35H	1412	1757	2144		
	RG 45H	2207	2511	3172		
	RG 55H	2459	2858	3538		
	RG 65H	3560	4064	4937		

2-9-7 Lubrication

(1) Grease

Grease nipple

Mounting location

The standard location of the grease fitting is at both ends of the block, but the nipple can be mounted in the side or the top of block. For lateral installation, we recommend that the nipple be mounted at the non-reference side, otherwise please contact us. It is possible to carry out the lubrication by using an oil-piping joint. The figure shows the locations of the grease fitting.

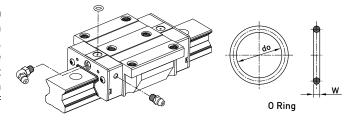
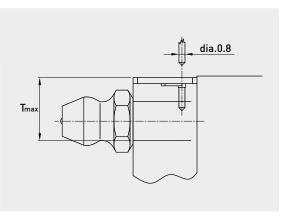



Table 2-9-15 O-Ring size and max. permissible depth for piercing

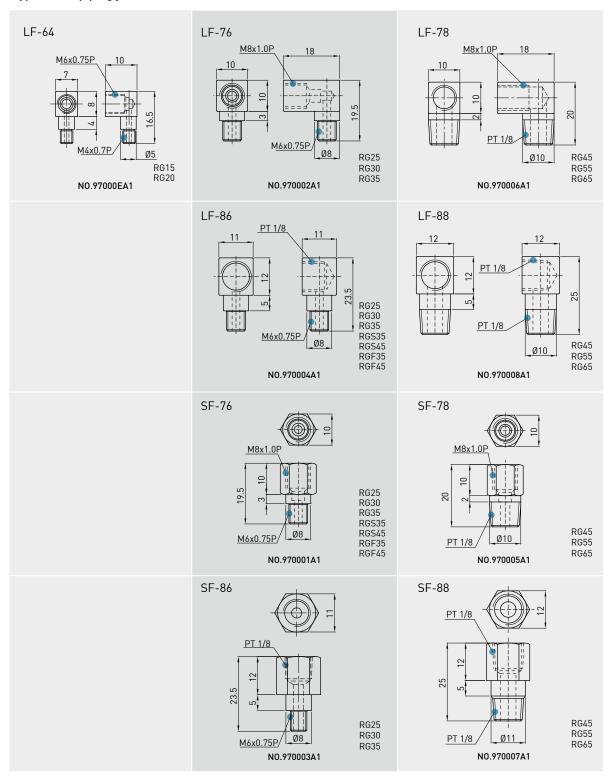
Size	0-Ring		Lube hole at top: max. permissible depth for piercing	
	do (mm)	W (mm)	T _{max} (mm)	
RG15	2.5±0.15	1.5±0.15	3.45	
RG20	2.5±0.15	1.5±0.15	4	
RG25	7.5±0.15	1.5±0.15	5.8	
RG30	7.5±0.15	1.5±0.15	6.2	
RG35	7.5±0.15	1.5±0.15	8.65	
RG45	7.5±0.15	1.5±0.15	9.5	
RG55	7.5±0.15	1.5±0.15	11.6	
RG65	7.5±0.15	1.5±0.15	14.5	

• The oil amount for a block filled with grease

Table 2-9-16 The oil amount for a block filled with grease

Size	Heavy Load(cm³)	Super Heavy Load(cm³)	Size	Heavy Load(cm³)	Super Heavy Load(cm³)
RG15	3	-	RG35	12	14
RG20	5	6	RG45	19	23
RG25	7	8	RG55	28	35
RG30	9	10	RG65	52	63

• Frequency of replenishment


Check the grease every 100 km, or every 3-6 months.

High Rigidity Roller Type

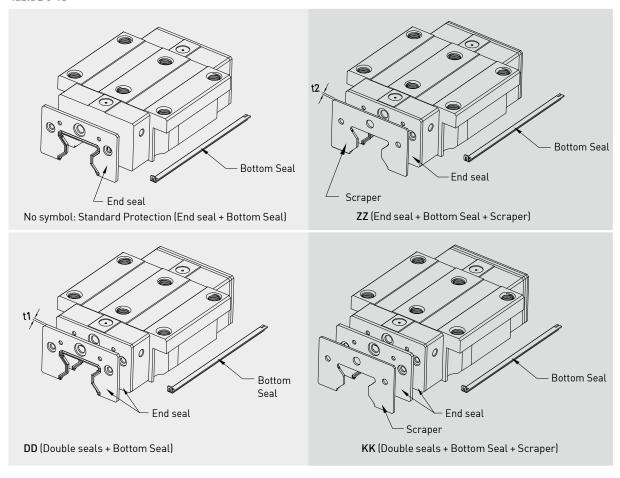
(2) Oil

The recommended viscosity of oil is about 32~150cSt. If you need to use oil-type lubrication, please inform us.

Types of oil piping joint

Oil feeding rate

Table 2-9-17 oil feed rate


Size	Feed rate (cm³/hr)	Size	Feed rate (cm³/hr)
RG15	0.14	RG35	0.23
RG20	0.14	RG45	0.3
RG25	0.167	RG55	0.367
RG30	0.2	RG65	0.433

2-9-8 Dust Proof Accessories

(1) Codes of accessories

If the following accessories are needed, please add the code followed by the model number.

Table 2-9-18

(2) End seal and bottom seal

To prevent life reduction caused by iron chips or dust entering the block.

(3) Double seals

Enhances the wiping effect, foreign matter can be completely wiped off.

Table 2-9-19 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
RG15 ES	2.2	RG35 ES	2.5
RG20 ES	2.2	RG45 ES	3.6
RG25 ES	2.2	RG55 ES	3.6
RG30 ES	2.4	RG65 ES	4.4

High Rigidity Roller Type

(4) Scraper

The scraper removes high-temperature iron chips and larger foreign objects.

Table 2-9-20 Dimensions of scraper

C:	Thickness (t2)	C:	Thickness (t2)
Size	(mm)	Size	(mm)
RG15 SC	1.0	RG35 SC	1.5
RG20 SC	1.0	RG45 SC	1.5
RG25 SC	1.0	RG55 SC	1.5
RG30 SC	1.5	RG65 SC	1.5

(5) Bolt caps for rail mounting holes

Caps are used to cover the mounting holes to prevent chips or other foreign objects from collecting in the holes. The caps will be enclosed in each rail package.

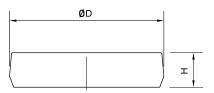


Table 2-9-21 Dimensions of Bolt Caps for Rail Mounting Holes

Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)	Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)
RGR15	M4	7.65	1.1	RGR35	M8	14.20	3.5
RGR20	M5	9.65	2.5	RGR45	M12	20.25	4.5
RGR25	M6	11.15	2.5	RGR55	M14	23.25	5
RGR30	M8	14.2	3.5	RGR65	M16	26.35	5

(6) Dimensions of block equipped with the dustproof parts

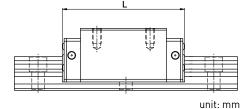


Table 2-9-22 Overall block length

Overall block length (L) Size SS ZZ DD KK RG15C 68.0 (70.4) 70.0 (74.4) 72.4 (74.8) 74.4 (78.8) RG20C 86.0 (88.4) 88.0 (92.4) 90.4 (92.8) 92.4 (96.8) RG20H 106.0 (108.4) 108.0 (112.4) 110.4 (112.8) 112.4 (116.8) RG25C 97.9 (101.5) 99.9 (105.9) 102.3 (105.9) 104.3 (110.3) RG25H 114.4 (118) 116.4 (122.4) 118.8 (122.4) 120.8 (126.8) RG30C 109.8 (113.4) 112.8 (118.8) 114.6 (118.2) 117.6 (123.6) RG30H 131.8 (135.4) 134.8 (140.8) 136.6 (140.2) 139.6 (145.6) RG35C 124.0 (129.4) 127.0 (135.0) 129.0 (134.4) 132.0 (140.0) RG35H 151.5 (156.9) 154.5 (162.5) 156.5 (161.9) 159.5 (167.5) RG45C 153.2 (156.4) 156.2 (164.2) 160.4 (163.6) 163.4 (171.4) RG45H 187.0 (190.2) 190.0 (198.0) 194.2 (197.4) 197.2 (205.2) RG55C 183.7 (186.9) 186.7 (194.7) 190.9 (194.1) 193.9 (201.9) RG55H 232.0 (235.2) 235.0 (243.0) 239.2 (242.4) 242.2 (250.2) RG65C 232.0 (236.0) 235.0 (245.0) 240.8 (244.8) 243.8 (253.8) RG65H 295.0 (299.0) 298.0 (308.0) 303.8 (307.8) 306.8 (316.8)

Note: The marking of "[]" denotes the maximum block length with screws, lips of end seals, etc.

The maximum value of resistance per end seal are as shown in the table.

Table 2-9-23 Seal Resistance

Size	Resistance N (kgf)	Size	Resistance N (kgf)
RG15	2.45 (0.25)	RG35	4.61 (0.47)
RG20	2.9 (0.3)	RG45	4.91 (0.5)
RG25	3.43 (0.35)	RG55	5.89 (0.6)
RG30	4.22 (0.43)	RG65	7.36 (0.75)

Note: 1. 1kgf=9.81N

2. Please inform HIWIN if low friction request is required.

2-9-10 The Accuracy Tolerance of Mounting Surface

(1) The accuracy tolerance of rail-mounting surface

As long as the accuracy requirements of the mounting surfaces shown in the following tables are met, the high accuracy, high rigidity and long life of the RG series linear guideway will be maintained without any difficulty.

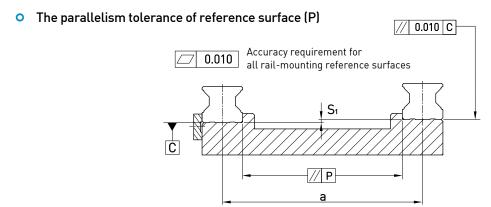


Table 2-9-24 Max. Parallelism Tolerance (P)

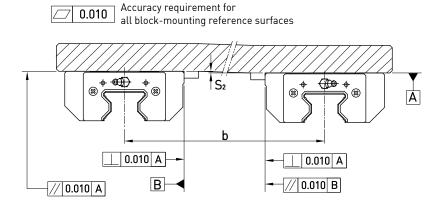
unit: µm

Size	Preload classes		
Size	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)
RG15	5	3	3
RG20	8	6	4
RG25	9	7	5
RG30	11	8	6
RG35	14	10	7
RG45	17	13	9
RG55	21	14	11
RG65	27	18	14

• The accuracy tolerance of reference surface height (S₁)

 $S_1 = a \times K - T_H$

S₁: Max. tolerance of height a: Distance between paired rails K: Coefficient of tolerance of height

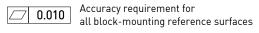

Table 2-9-25 Coefficient of tolerance of height

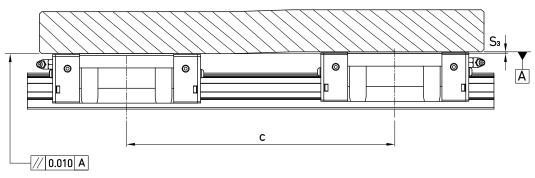
	•		
Cino	Preload classes		
Size	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)
K	2.2×10-4	1.7×10-4	1.2×10 ⁻⁴

High Rigidity Roller Type

(2) The accuracy tolerance of block-mounting surface

• The tolerance of the height of reference surface when two or more pieces are used in parallel (S_2)




$$S_2 = b \times 4.2 \times 10^{-5}$$

S2: Max. tolerance of height

b: Distance between paired blocks

• The tolerance of the height of reference surface when two or more pieces are used in parallel (S_3)

$$S_3 = c \times 4.2 \times 10^{-5}$$

 S_3 : Max. tolerance of height

c : Distance between paired blocks

2-9-11 Cautions for Installation

(1) Shoulder heights and fillets

Ilmproper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

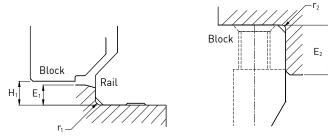


Table 2-9-26

10010 2 7 20					
Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
RG15	0.5	0.5	3	4	4
RG20	0.5	0.5	3.5	5	5
RG25	1.0	1.0	5	5	5.5
RG30	1.0	1.0	5	5	6
RG35	1.0	1.0	6	6	6.5
RG45	1.0	1.0	7	8	8
RG55	1.5	1.5	9	10	10
RG65	1.5	1.5	10	10	12

(2) Tightening Torque of Mounting Bolts

Improper tightening of mounting bolts will seriously influence the accuracy of a linear guideway. The following tightening torque for the different sizes of bolt is recommended.

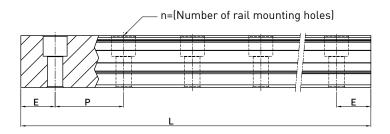
Table 2-9-27

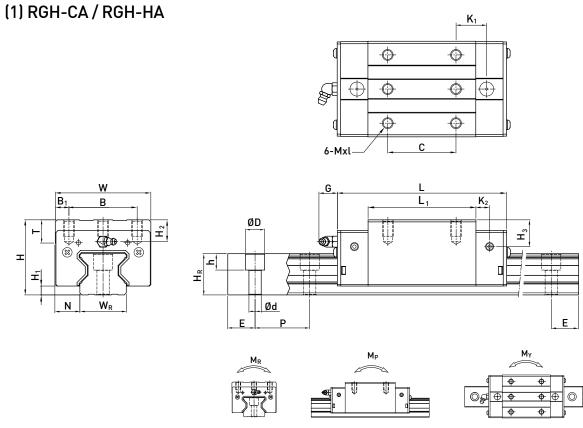
Size	Bolt size	Torque N-cm(kgf-cm)		
3126	Dott Size	Iron	Casting	Aluminum
RG15	M4×0.7P×16L	392 (40)	274 (28)	206 (21)
RG20	M5×0.8P×20L	883 (90)	588 (60)	441 (45)
RG25	M6×1P×20L	1373 (140)	921 (94)	686 (70)
RG30	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)
RG35	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)
RG45	M12×1.75P×35L	11772 (1200)	7840 (800)	5880 (600)
RG55	M14×2P×45L	15696 (1600)	10500 (1100)	7840 (800)
RG65	M16×2P×50L	19620 (2000)	13100 (1350)	9800 (1000)

High Rigidity Roller Type

2-9-12 Standard and Maximum Lengths of Rail

HIWIN offers a number of standard rail lengths. Standard rail lengths feature end mounting hole placements set to predetermined values (E). For non-standard rail lengths, be sure to specify the E-value to be no greater than 1/2 the pitch (P) dimension. An E-value greater than this will result in unstable rail ends.



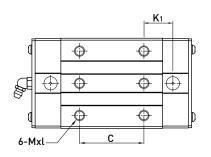

Table 2-9-28 unit: mm

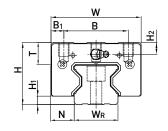
								dilit.
Item	RGR15	RGR20	RGR25	RGR30	RGR35	RGR45	RGR55	RGR65
	160 (5)	220 (7)	220 (7)	280 (7)	280 (7)	570 (11)	780 (13)	1,270 (17)
	220 (7)	280 (9)	280 (9)	440 (11)	440 (11)	885 (17)	1020 (17)	1,570 (21)
	340 (11)	340 (11)	340 (11)	600 (15)	600 (15)	1,200 (23)	1,260 (21)	2,020 (27)
	460 (15)	460 (15)	460 (15)	760 (19)	760 (19)	1,620 (31)	1,500 (25)	2,620 (35)
Standard Length L(n)	580 (19)	640 (21)	640 (21)	1,000 (25)	1,000 (25)	2,040 (39)	1,980 (33)	-
	700 (23)	820 (27)	820 (27)	1,640 (41)	1,640 (41)	2,460 (47)	2,580 (43)	-
	940 (31)	1000 (33)	1,000 (33)	2,040 (51)	2,040 (51)	2,985 (57)	2,940 (49)	
	1120 (37)	1180 (39)	1,240 (41)	2,520 (63)	2,520 (63)	3,090 (59)	3,060 (51)	-
	1360 (45)	1360 (45)	1,600 (53)	3,000 (75)	3,000 (75)	-	-	-
Pitch (P)	30	30	30	40	40	52.5	60	75
Distance to End (E _s)	20	20	20	20	20	22.5	30	35
Max. Standard Length	4,000 (133)	4,000 (133)	4,000 (133)	4,000 (100)	4,000 (100)	3,982.5 (76)	3,960 (66)	3,970 (53)
Max. Length	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000

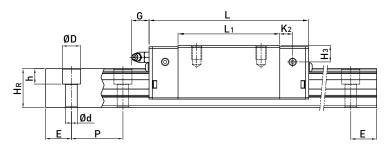
Note: 1. Tolerance of E value for standard rail is $0.5 \sim -0.5$ mm. Tolerance of E value for jointed rail is $0 \sim -0.3$ mm.

- 2. Maximum standard length means the max. rail length with standard E value on both sides.
- 3. If different E value is needed, please contact HIWIN.

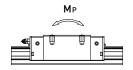
2-9-13 Dimensions for RG series

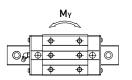


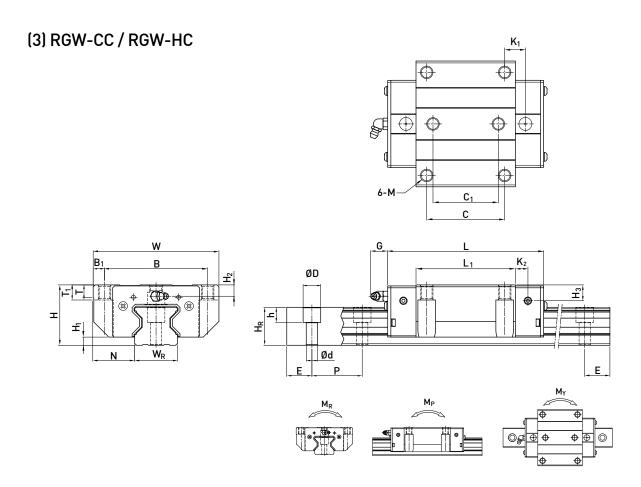

	of A		sions mbly					Din	nensi	ons of	Blo	ck (m	ım)				Di	men	sior	ıs of	Rai	l (mr	m)	Mounting Bolt for Rail	Basic Dynamic Load	Static Load		atic Rat Momen		Wei	ght
Model No.																									Rating	Rating	\mathbf{M}_{R}	M _P	$M_{\rm Y}$	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	H _R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
RGH15CA	28	4	9.5	34	26	4	26	45	68	13.4	4.7	5.3	M4 x 8	6	7.6	10.1	15	16.5	7.5	5.7	4.5	30	20	M4 x16	11.3	24	0.311	0.173	0.173	0.20	1.8
RGH20CA	0.1	_	10	,,	00	,	36	57.5	86	15.8	,	. .	ME 0	0	0.0	0.0	00	01	٥٠	٥٠	,	00	00	ME 00	21.3	46.7	0.647	0.46	0.46	0.40	0.77
RGH20HA	34	5	12	44	32	6	50	77.5	106	18.8	6	5.3	M5 x 8	8	8.3	8.3	20	21	9.5	8.5	6	30	20	M5 x20	26.9	63	0.872	0.837	0.837	0.53	2.76
RGH25CA	/ 0		12.5	/0	25	/ =				20.75	7 25	12	M6 x 8	0 5	10.2	10	22	22 <i>/</i>	11	0	7	30	20	M6 x20	27.7	57.1	0.758	0.605	0.605	0.61	3.08
RGH25HA	40	5.5	12.5	48	33	6.5			114.4		7.20	12	MOXO	9.5	10.2	10	23	23.6	11	7	/	30	20	M6 XZU	33.9	73.4	0.975	0.991	0.991	0.75	3.08
RGH30CA	45	,	16	/ 0	/ 0	10	40	71	109.8	23.5	0	10	M0 v10	0 E	0.5	10.2	20	20	1/	12	0	/ 0	20	M8 x25	39.1	82.1	1.445	1.06	1.06	0.90	4.41
RGH30HA	45	0	10	00	40	10	60	93	131.8	24.5	0	12	MOXIU	7.0	7.0	10.3	20	20	14	12	7	40	20	MOXZO	48.1	105	1.846	1.712	1.712	1.16	4.41
RGH35CA		/ [18	70	En	10			124		10	10	M0 v12	12	1/	10 /	27	າດາ	1/	10	0	/ 0	20	M8 x25	57.9	105.2	2.17	1.44	1.44	1.57	6.06
RGH35HA	33	0.0	10	70	30	10	72	106.5	151.5	25.25	10	12	MOXIZ	12	10	17.0	34	30.2	14	12	7	40	20	MOXZO	73.1	142	2.93	2.6	2.6	2.06	0.00
RGH45CA	70	0	20.5	0.4	40	12			153.2		10	12.0	M10×17	14	20	27	<i>/</i> E	20	20	17	1/	52 E	22 E	M12 x35	92.6	178.8	4.52	3.05	3.05	3.18	9.97
RGH45HA	70	0	20.5	00	00	13			187		10	12.7	MIIUXII	10	20	24	43	30	20	17	14	JZ.J	22.3	MIZXSS	116	230.9	6.33	5.47	5.47	4.13	7.77
RGH55CA	on	10	23.5	100	75	12 5		125.5	183.7		12 E	12.0	M12v10	17 5	22	27.5	F2	1.1.	22	20	14	40	20	M14 x45	130.5	252	8.01	5.4	5.4	4.89	13.98
RGH55HA	00	10	23.3	100	/3	12.0		173.8	232		12.3	12.7	IMI 1 Z X 10	17.3	22	27.3	JJ	44	23	20	10	00	30	M114 X43	167.8	348	11.15	10.25	10.25	6.68	13.70
RGH65CA	on	12	31.5	124	74	25	70	160	232		15 0	12.0	M14 v20	25	15	15	42	F2	24	22	10	75	25	M16x50	213	411.6	16.20	11.59	11.59	8.89	20.22
RGH65HA	70	12	31.3	120	70	23	120	223	295		13.0	12.7	141 10 XZU	25	10	15	00	55	20	22	10	75	30	MIDXOU	275.3	572.7	22.55	22.17	22.17	12.13	20.22


Note: 1.1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: C_{50R} = 1.23 x C_{100R}

High Rigidity Roller Type


(2) RGL-CA / RGL-HA

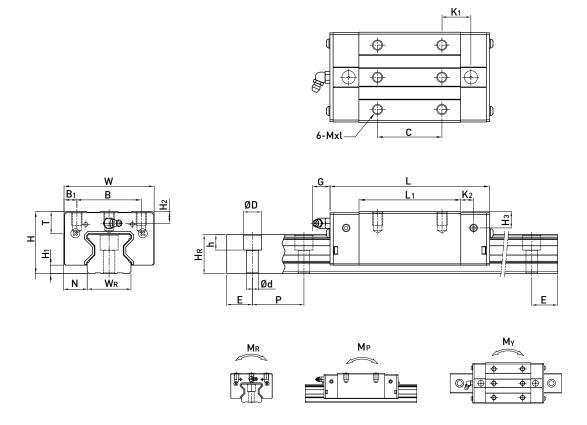




	of A	sse	ions mbly					Dim	nensio	ns of	Bloc	k (m	m)				D	imer	sio	ns o	f Ra	il (m	m)	Mounting Bolt for Rail	Load	Load	'	atic Rai Momen	ted t	Wei	ght
Model No.																									Rating		\mathbf{M}_{R}	M_{P}	M_{γ}	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	\mathbf{W}_{R}	H_R	D	h	d	Р	Е	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
RGL15CA	24	4	9.5	34	26	4	26	45	68	13.4	4.7	5.3	M4X5.5	6	3.6	6.1	15	16.5	7.5	5.7	4.5	30	20	M4x16	11.3	24	0.311	0.173	0.173	0.15	1.8
RGL20CA			12	1.1.	22			57.5				F 2	MEV4	0	/ 2	/ 2	20	21	0 5	0 5		20	20	M5x20	21.3	46.7	0.647	0.46	0.46		2.76
RGL20HA	30	J	12	44	32	0		77.5			0	J.J	MOVO	0	4.3	4.3	20	21	7.5	0.5	0	30	20	MIJXZU	26.9	63	0.872	0.837	0.837		
RGL25CA	24	5.5	12 E	/. O	25	4 5	35	64.5	97.9	20.75	7 25	12	M4v0	0.5	4.2		22	22.4	11	0	7	20	20	M6x20	27.7	57.1	0.758	0.605	0.605		3.08
RGL25HA	30	5.5	12.3	40	33	0.5	50	81	114.4	21.5	1.23	12	MOXO	7.3	0.2	0	23	23.0	"	7	,	30	20	MOXZU	33.9	73.4	0.975	0.991	0.991		
RGL30CA				4 0				71			8	12	M8v10	95	45	73	28	28	1/	12	9	/ /0	20	M8x25	39.1	82.1	1.445	1.06	1.06		4 41
RGL30HA				00	40	10		93			U	12	1410710	7.5	0.5	7.0	20	20	14	12	′	40	20	1410723	48.1	105	1.846	1.712	1.712		4.41
RGL35CA				70	50	10		79			10	12	M8v12	12	q	12 6	3/4	30.2	1/	12	9	/ /0	20	M8x25	57.9	105.2	2.17	1.44	1.44	1.27	6.06
RGL35HA		0.5	10	70				106.5			10	12	MOXIZ	12	,	12.0	54	50.2	14	12	′	40	20	1410723	73.1	142	2.93	2.6	2.6	1.65	0.00
RGL45CA		Q	20.5	84				106			10	12 9	M10×17	16	10	1/4	45	38	20	17	1/	52 5	22.5	M12v35	92.6	178.8	4.52	3.05	3.05	2.47	9.97
RGL45HA		Ü	20.5	00	00	10		139.8			10	12.7	MIOXIT	10	10	1-4	40	50	20	17	14	32.3	22.5	1412,000	116	230.9	6.33	5.47	5.47	3.20	
RGL55CA	70	10	23.5	100	75	12 5	75	125.5	183.7	37.75	12 5	12 9	M12x18	17 5	12	175	53	44	23	20	16	4N	30	M14x45	130.5	252	8.01	5.4	5.4	3.91	13.98
RGL55HA		10	20.0	100	75	12.0		173.8			12.0	12.7	1-112 × 10	17.5	12	17.5	55	44	20	20	10	00	30	1114443	167.8	348	11.15	10.25	10.25	5.32	10.70

Note : 1. 1 kgf = 9.81 N

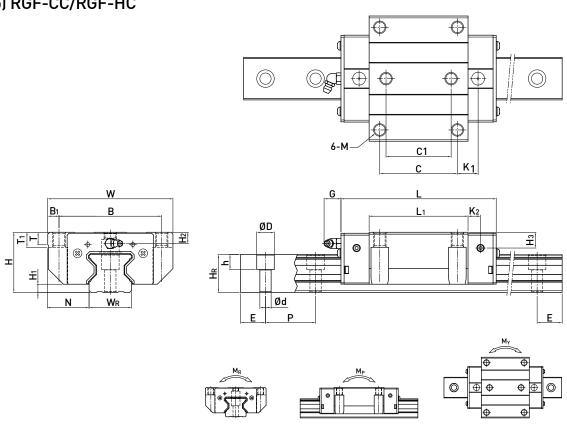
2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: $C_{50R} = 1.23 \text{ x } C_{100R}$



	of A		sions mbly						Dime	ensior	ıs of E	llock	(mr	n)					D	ime	nsio	ns o	of Ra	iil (m	ım)	Mounting Bolt for Rail	Load	Static Load	51	atic Rat Momen		Wei	ight
Model No.		,,,,,,	.,																							rtuit	Rating	Rating		M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	C ₁	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	W _R	H_R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
RGW15CC	24	4	16	47	38	4.5	30	26	45	68	11.4	4.7	5.3	M5	6	6.95	3.6	6.1	15	16.5	7.5	5.7	4.5	30	20	M4x16	11.3	24	0.311	0.173	0.173	0.22	1.8
RGW20CC		_	21 5	/2	F2	_	/0	25		86		,	F 2	M6	0	10	, ,	/ 2	20	21	0.5	٥٦	,	20	20	M5x20	21.3	46.7	0.647	0.46	0.46	0.47	2.76
RGW20HC		Э	21.5	63	53	Э	40	33		106		0	5.3	MP	ð	10	4.3	4.3	20	21	9.5	8.5	0	30	20	MOXZU	26.9	63	0.872	0.837	0.837	0.63	2.76
RGW25CC		c c	22 5	70	E 7	/ =	/ =			97.9		7 25	10	МО	0 E	10	/ 2	,	22	22 /	11	0	7	20	20	M6x20	27.7	57.1	0.758	0.605	0.605	0.72	3.08
RGW25HC		5.5	23.3	70	37	0.0	45	40		114.4		7.20	12	MO	7.0	10	0.2	0	23	23.0	"	7	/	30	20	MOXZU	33.9	73.4	0.975	0.991	0.991	0.91	3.00
RGW30CC			31	on	72	0	52	44		109.8	17.5	0	12	M10	0.5	10	4 5	72	20	20	1.	12	0	۷.0	20	M8x25	39.1	82.1	1.445	1.06	1.06	1.16	4.41
RGW30HC		0	31	70	12	7	JZ	44		131.8	28.5	0	12	MITU	7.3	10	0.5	7.3	20	20	14	12	7	40	20	MOXZJ	48.1	105	1.846	1.712	1.712	1.52	4.41
RGW35CC		4 5	22	100	02	0	42	52		124		10	12	M10	12	12	0	12 4	2/	20.2	1./	12	0	۷.0	20	Movae	57.9	105.2	2.17	1.44	1.44	1.75	6.06
RGW35HC		0.5	33	100	02	7	02			151.5		10	12	MITU	12	13	7	12.0	34	30.2	14	12	7	40	20	MOXZJ	73.1	142	2.93	2.6	2.6	2.40	0.00
RGW45CC		0	27.5	120	100	10	on	40	106	153.2	21	10	12 0	M12	1./.	15	10	1.6	/ E	20	20	17	1.6	52 F	22.5	M12v2E	92.6	178.8	4.52	3.05	3.05	3.43	9.97
RGW45HC		0	37.3	120	100	10	00			187		10	12.7	MIZ	14	13	10	14	43	30	20	17	14	JZ.J	22.3	MIZXSS	116	230.9	6.33	5.47	5.47	4.57	7.77
RGW55CC		10	43.5	1/10	114	12	05			183.7		12 5	12 0	M17	14	17	12	17 5	F2	1.1.	22	20	14	40	20	M14x45	130.5	252	8.01	5.4	5.4	5.43	13 98
RGW55HC		10	43.3	140	110	12	73			232		12.3	12.7	IVI 14	10	17	12	17.3	55	44	23	20	10	00	30	M14X43	167.8	348	11.15	10.25	10.25	7.61	13.70
RGW 65CC		12	52 F	170	1/.2	1/	110	02		232		15.0	12.0	M1/	22	22	15	15	42	52	24	22	10	75	25	M16x50	213	411.6	16.20	11.59	11.59	11.63	20.22
RGW 65HC		12	55.5	1/0	142	14	110	02		295		15.0	12.7	IVI 10	22	23	13	13	03	33	20	22	10	/5	33	MIOXOU	275.3	572.7	22.55	22.17	22.17	16.58	20.22

Note: 1.1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: C_{50R} = 1.23 x C_{100R}

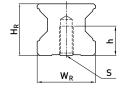
High Rigidity Roller Type

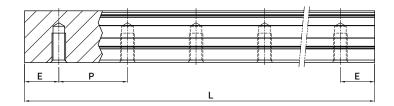

(4) RGS-CA/RGS-HA

	Dim of A		nbly					Dir	mensio	ons of	Bloc	k (mı	n)				Di	men	sion	s of	f Ra	il (m		Mounting Bolt for Rail	Load	Static Load		tic Rat Iomen		Wei	ght
Model No.			,																					Ruit	Rating	Rating	M_R	M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	W _R	H _R	D	h	d	Р	E	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
RGS35CA		, ,	10	70	F0	10		79	124	22.5	10	12	M00	10	, -	7.0	27	20.2	1/	10	0	/0	20	M8x25	57.9	105.2	2.17	1.44	1.44	1.12	. 0./
RGS35HA		6.5	18	70	อบ			106.5	151.5	25.25	10	12	M8X9	12	6.5	7.8	34	3U.Z	14	12	9	40	20	MRXZD	73.1	142	2.93	2.6	2.6	1.45	6.06
RGS45CA		0	20 5	0./	/ 0			106	153.2	31	10	10.0	M1011	1/	7	7	, -	20	20	17	1/	F2 F	22.5	M100F	92.6	178.8	4.52	3.05	3.05	1.96	0.07
RGS45HA	52	8	20.5	86	60			139.8	187	37.9	10	12.9	MIUXII	16	/	/	45	38	20	17	14	52.5	22.5	M12x35	116	230.9	6.33	5.47	5.47	2.5	9.97

^{2.} The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: $C_{50R} = 1.23 \text{ x } C_{100R}$

(5) RGF-CC/RGF-HC




Model	Dim of A		nbly						Dimen	ısions	of Blo	ock l	mm)					D	imer	sio	ns of	f Ra	il (m		Mounting Bolt for Rail	Dynamic Load	Load	N	itic Rat Iomen		Wei	ght
No.																										rtuit	Rating	Rating	M_R	M _P	M _Y	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	C ₁	L ₁	L	K ₁	\mathbf{K}_{2}	G	М	Т	T ₁	H ₂	H ₃	W _R	H_R	D	h	d	Р	Е	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
RGF35CC		/ =	22	100	82	0	/2	En		124		10	10	M10	12	12	<i>,</i>	7.0	27	20.2	1/	10	0	/ N	20	M8x25	57.9	105.2	2.17	1.44	1.44	1.52	6.06
RGF35HC		6.5	33	100	82	7	62			151.5			12	MIU	12	13	6.5	7.8	34	30.2	14	12	9	40	20	МОХДО	73.1	142	2.93	2.6	2.6	2.08	6.06
RGF45CC	52	0	27.5	100	100	10	00	/ 0	106	153.2		10	10.0	M10	1/	15	7	7	/ -	20	20	17	1/	F2 F	22.5	M100F	92.6	178.8	4.52	3.05	3.05	2.67	0.07
RGF45HC		8	37.5	120	100	10	δU		139.8	187		10	12.9	M12	14	13	/	/	45	38	20	17	14	5∠.5	22.5	M12x35	116	230.9	6.33	5.47	5.47	3.56	9.97

Note: 1.1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: C_{50R} = 1.23 x C_{100R}

High Rigidity Roller Type

(6) Dimensions for RGR-T (Rail Mounting from Bottom)

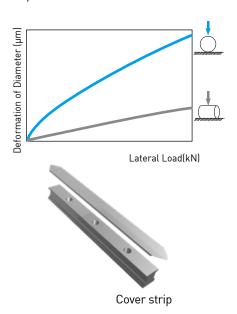
Model No.	Dimensions	of Rail (mm)					Weight
	W_R	H _R	S	h	Р	Е	(kg/m)
RGR15T	15	16.5	M5×0.8P	8	30	20	1.86
RGR20T	20	21	M6×1P	10	30	20	2.76
RGR25T	23	23.6	M6×1P	12	30	20	3.36
RGR30T	28	28	M8×1.25P	15	40	20	4.82
RGR35T	34	30.2	M8×1.25P	17	40	20	6.48
RGR45T	45	38	M12×1.75P	24	52.5	22.5	10.83
RGR55T	53	44	M14×2P	24	60	30	15.15
RGR65T	63	53	M20×2.5P	30	75	35	21.24

2-10 CRG Series - High Rigidity Roller Type Linear Guideway with Cover Strip

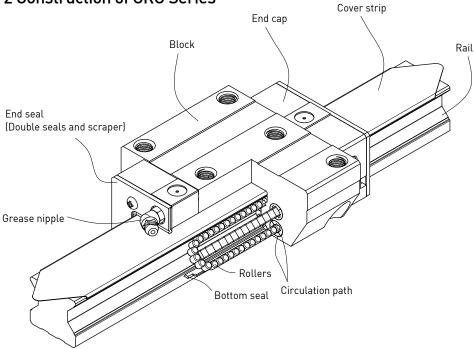
2-10-1 Advantages and features

CRG series linear guideways are a : cover-strip type, featuring high rigidity for high loads. It also has four-way load characteristics. This specification can be matched with the latest slide dustproof accessories.

(1) Super high rigidity

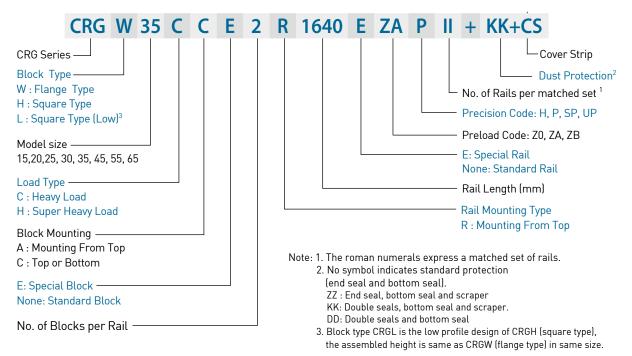

The CRG series is a type of linear guideway that uses rollers as the rolling elements. Rollers have a greater contact area than balls so that the roller guideway features higher load capacity and greater rigidity. The figure shows the rigidity of a roller and a ball with equal volume.

(2) Operating life increased


Compare with the ball element, the contact pressure of rolling element is distributed on the line region. Therefore, stress concentration was reduced siginificantly and the CRG series offers longer running life.

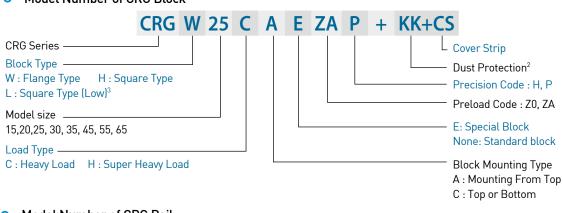
The CRG series offers a special stainless cover strip.

2-10-2 Construction of CRG Series

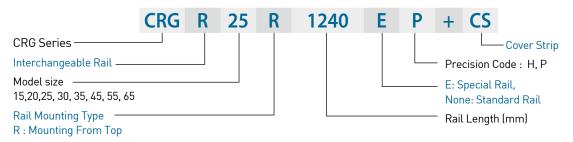

- Rolling circulation system: Block, Rail, End cap, Circulation path, Rollers
- Lubrication system: Grease nipple and piping joint
- Dust protection system: End seal, Bottom seal, without CAP, Cover Strip, Double seals and Scraper

High Rigidity Roller Type with Cover Strip

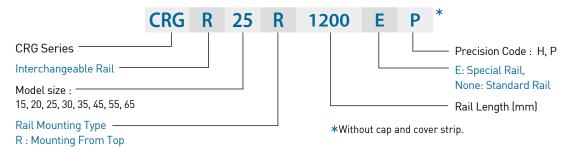
2-10-3 Model Number of CRG series


CRG series linear guideways are classified into non-interchangeable and interchangeable types. The sizes of these two types are the same as one another. The main difference is that the interchangeable type of blocks and rails can be freely exchanged and they can maintain P-class accuracy. Because of strict dimensional control, the interchangeable type linear guideways are a wise choice for customers when rails do not need to be matched for an axis. The model number of the CRG series identifies the size, type, accuracy class, preload class, etc.

(1) Non-interchangeable type



(2) Interchangeable type


Model Number of CRG Block

Model Number of CRG Rail

Model Number of CRG Rail

2-10-4 Types

(1) Block types

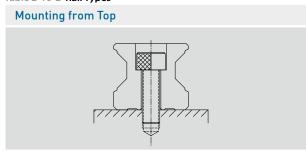

HIWIN offers two types of guide blocks, flange and square type. Because of the low assembly height and large mounting surface, the flange type is excellent for heavy moment load applications.

Table 2-10-1 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	CRGH-CA CRGH-HA	***	28 ↓ 90	100 ↓ 4000	 Automation Systems Transportation equipment CNC machining centers Heavy duty cutting machines
Square (low)	CRGL-CA CRGL-HA		24 ↓ 70	100 ↓ 4000	 CNC grinding machines Injection molding machines Plano millers Devices requiring high rigidity Devices requiring high load
Flange	CRGW-CC CRGW-HC		24 ↓ 90	100 ↓ 4000	capacity Capacity Electric discharge machines

(2) Rail types

Table 2-10-2 Rail Types

High Rigidity Roller Type with Cover Strip

2-10-5 Accuracy Classes

The accuracy of the CRG series can be classified into four classes: high (H), precision (P), super precision (SP) and ultra precision (UP). Customers may choose the class by referencing the accuracy requirements of the applied equipment.

(1) Accuracy of non-interchangeable

Table 2-10-3 Accuracy Standards

Item	CRG - 15, 20			
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Dimensional tolerance of width N	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Variation of height H	0.01	0.006	0.004	0.003
Variation of width N	0.01	0.006	0.004	0.003
Running parallelism of block surface C to surface A		See	Table 2-10-11	
Running parallelism of block surface D to surface B		See	Table 2-10-11	

Table 2-10-4 Accuracy Standards

Unit: mm

Item	CRG - 25, 30, 35			
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.015	0.007	0.005	0.003
Variation of width N	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A	See Table 2-10-11			
Running parallelism of block surface D to surface B		See	Table 2-10-11	

Table 2-10-5 Accuracy Standards

Unit: mm

Item	CRG - 45, 55			
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Dimensional tolerance of width N	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Variation of height H	0.015	0.007	0.005	0.003
Variation of width N	0.02	0.01	0.007	0.005
Running parallelism of block surface C to surface A	See Table 2-10-11			
Running parallelism of block surface D to surface B		See	Table 2-10-11	

Table	2-10-6	Accuracy	/ Standards

Item	CRG - 65			
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.07	0 - 0.07	0 - 0.05	0 - 0.03
Dimensional tolerance of width N	± 0.07	0 - 0.07	0 - 0.05	0 - 0.03
Variation of height H	0.02	0.01	0.007	0.005
Variation of width N	0.025	0.015	0.01	0.007
Running parallelism of block surface C to surface A	See Table 2-10-11			
Running parallelism of block surface D to surface B		See	Table 2-10-11	

(2) Accuracy of interchangeable

Table 2-10-7 Accuracy Standards

Unit: mm

Table 2-10-7 Accuracy Standards		=
Item	CRG - 15, 20	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.03	± 0.015
Dimensional tolerance of width N	± 0.03	± 0.015
Variation of height H	0.01	0.006
Variation of width N	0.01	0.006
Running parallelism of block surface C to surface A	See Tal	ole 2-10-11
Running parallelism of block surface D to surface B	See Tal	ble 2-10-11

Table 2-10-8 Accuracy Standards

Unit: mm

Item	CRG - 25, 30, 35	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.04	± 0.02
Variation of height H	0.015	0.007
Variation of width N	0.015	0.007
Running parallelism of block surface C to surface A	See Table 2-10-11	
Running parallelism of block surface D to surface B	See Table 2-10-11	

Table 2-10-9 Accuracy Standards

Unit: mm

Item	CRG - 45, 55	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.05	± 0.025
Dimensional tolerance of width N	± 0.05	± 0.025
Variation of height H	0.015	0.007
Variation of width N	0.02	0.01
Running parallelism of block surface C to surface A	See Table 2-10-11	
Running parallelism of block surface D to surface B	See Table 2-10-11	

CRG Series

High Rigidity Roller Type with Cover Strip

Table 2-10-10 Accuracy Standards

Unit: mm

Item	CRG - 65	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.07	± 0.035
Dimensional tolerance of width N	± 0.07	± 0.035
Variation of height H	0.02	0.01
Variation of width N	0.025	0.015
Running parallelism of block surface C to surface A	See Ta	ble 2-10-11
Running parallelism of block surface D to surface B	See Ta	ble 2-10-11

(3) Accuracy of running parallelism

Table 2-10-11 Accuracy of Running Parallelism

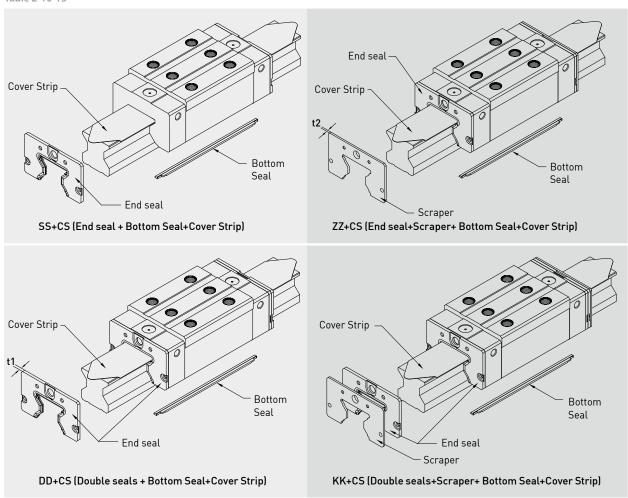
· · · · · · · · · · · · · · · · · · ·	•			
Rail Length (mm)	Accuracy (µm)			
3 · ·	Н	Р	SP	UP
~ 100	7	3	2	2
100 ~ 200	9	4	2	2
200 ~ 300	10	5	3	2
300 ~ 500	12	6	3	2
500 ~ 700	13	7	4	2
700 ~ 900	15	8	5	3
900 ~ 1,100	16	9	6	3
1,100 ~ 1,500	18	11	7	4
1,500 ~ 1,900	20	13	8	4
1,900 ~ 2,500	22	15	10	5
2,500 ~ 3,100	25	18	11	6
3,100 ~ 3,600	27	20	14	7
3,600 ~ 4,000	28	21	15	7


2-10-6 Preload

A preload can be applied to each guideway using oversized rollers. Generally, a linear motion guideway has negative clearance between the raceway and rollers to improve stiffness and maintain high precision. The CRG series linear guideway offers three standard preloads for various applications and conditions.

Table 2-10-12

Class	Code	Preload	Condition
Light Preload	Z0	0.02C~ 0.04C	Certain load direction, low impact, low precision required
Medium Preload	ZA	0.07C~0.09C	High rigidity required, high precision required
Heavy Preload	ZB	0.12C~ 0.14C	Super high rigidity required, with vibration and impact


The figure shows the relationship between the rigidity, friction and nominal life. A preload no larger than ZA would be recommended for smaller model sizes to avoid over-preload affecting the life of the guideway.

2-10-7 Dust Proof Accessories

(1) Codes of accessories

Table 2-10-13

(2) End seal and bottom seal

To prevent life reduction caused by iron chips or dust entering the block.

(3) Double seals

Enhances the wiping effect, foreign matter can be completely wiped off.

Table 2-10-14 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
CRG15 ES	2.2	CRG35 ES	2.5
CRG20 ES	2.2	CRG45 ES	3.6
CRG25 ES	2.2	CRG55 ES	3.6
CRG30 ES	2.4	CRG65 ES	4.4

CRG Series

High Rigidity Roller Type with Cover Strip

(4) Scraper

The scraper removes high-temperature iron chips and larger foreign objects.

Table 2-10-15 Dimensions of scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
CRG15 SC	1.0	CRG35 SC	1.5
CRG20 SC	1.0	CRG45 SC	1.5
CRG25 SC	1.0	CRG55 SC	1.5
CRG30 SC	1.5	CRG65 SC	1.5

(5) Dimensions of block equipped with the dustproof parts

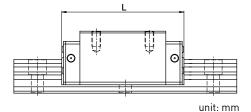


Table 2-10-16 Overall block length

C:	Overall block length (L)		
Size	SS	ZZ	DD	KK
CRG15C	68.0 (70.0)	70.0 (74.4)	72.4 (74.4)	74.4 (78.8)
CRG20C	86.0 (88.0)	88.0 (92.4)	90.4 (92.4)	92.4 (96.8)
CRG20H	106.0 (108.0)	108.0 (112.4)	110.4 (112.4)	112.4 (116.8)
CRG25C	97.9 (101.5)	99.9 (105.9)	102.3 (105.9)	104.3 (110.3)
CRG25H	114.4 (118)	116.4 (122.4)	118.8 (122.4)	120.8 (126.8)
CRG30C	109.8 (113.4)	112.8 (118.8)	114.6 (118.2)	117.6 (123.6)
CRG30H	131.8 (135.4)	134.8 (140.8)	136.6 (140.2)	139.6 (145.6)
CRG35C	124.0 (129.4)	127.0 (135.0)	129.0 (134.4)	132.0 (140.0)
CRG35H	151.5 (156.9)	154.5 (162.5)	156.5 (161.9)	159.5 (167.5)
CRG45C	153.2 (156.4)	156.2 (164.2)	160.4 (163.6)	163.4 (171.4)
CRG45H	187.0 (190.2)	190.0 (198.0)	194.2 (197.4)	197.2 (205.2)
CRG55C	183.7 (186.9)	186.7 (194.7)	190.9 (194.1)	193.9 (201.9)
CRG55H	232.0 (235.2)	235.0 (243.0)	239.2 (242.4)	242.2 (250.2)
CRG65C	232.0 (236.0)	235.0 (245.0)	240.8 (244.8)	243.8 (253.8)
CRG65H	295.0 (299.0)	298.0 (308.0)	303.8 (307.8)	306.8 (316.8)

Note : The marking of "($\;\;$)" denotes the maximum block length with screws, lips of end seals, etc.

2-10-8 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-10-17 Seal Resistance

Table 2-10-17 Seal Resistance			
Size	Resistance N (kgf)	Size	Resistance N (kgf)
CRG15	1.96 (0.2)	CRG35	3.53 (0.36)
CRG20	2.45 (0.25)	CRG45	4.21 (0.43)
CRG25	2.74 (0.28)	CRG55	5.09 (0.52)
CRG30	3.31 (0.31)	CRG65	6.66 (0.68)

2-10-9 The Accuracy Tolerance of Mounting Surface

(1) The accuracy tolerance of rail-mounting surface

As long as the accuracy requirements of the mounting surfaces shown in the following tables are met, the high accuracy, high rigidity and long life of the CRG series linear guideway will be maintained without any difficulty.

• The parallelism tolerance of reference surface (P) // 0.010 C Accuracy requirement for 0.010 all rail-mounting reference surfaces a

Table 2-10-18 Max. Parallelism Tolerance (P)

unit: µm

Size	Preload classes						
Size	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)				
CRG15	5	3	3				
CRG20	8	6	4				
CRG25	9	7	5				
CRG30	11	8	6				
CRG35	14	10	7				
CRG45	17	13	9				
CRG55	21	14	11				
CRG65	27	18	14				

• The accuracy tolerance of reference surface height (S1)

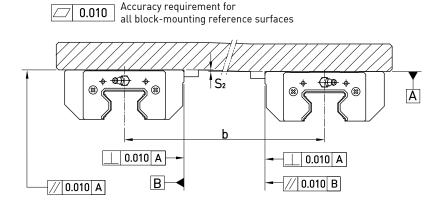
 $S_1 = a \times K$

S₁: Max. tolerance of height

a: Distance between paired rails

K: Coefficient of tolerance of height

Table 2-10-19 Coefficient of tolerance of height

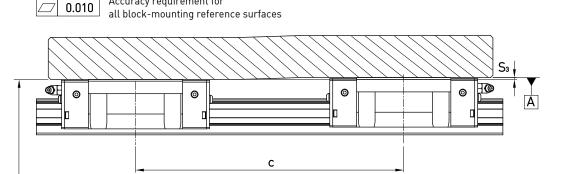

Size	Preload classes		
5126	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)
K	2.2×10 ⁻⁴	1.7×10 ⁻⁴	1.2×10-4

CRG Series

High Rigidity Roller Type with Cover Strip

(2) The accuracy tolerance of block-mounting surface

• The tolerance of the height of reference surface when two or more pieces are used in parallel (S_2)


 $S_2 = b \times 4.2 \times 10^{-5}$

 S_2 : Max. tolerance of height

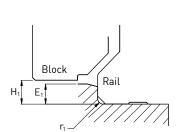
b : Distance between paired blocks

• The tolerance of the height of reference surface when two or more pieces are used in parallel (S₃)

Accuracy requirement for

 $S_3 = c \times 4.2 \times 10^{-5}$

// 0.010 A


 S_3 : Max. tolerance of height

c : Distance between paired blocks

2-10-10 Cautions for Installation

(1) Shoulder heights and fillets

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

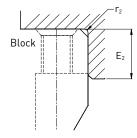


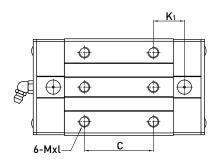
Table 2-10-20

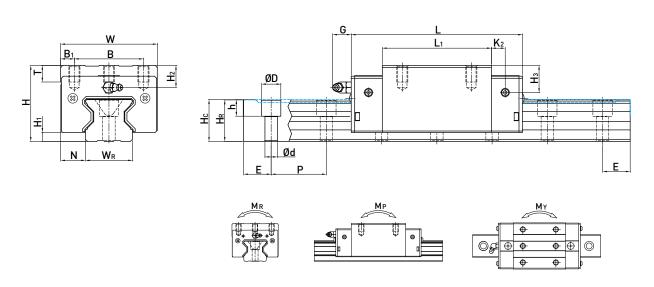
10010 2 10 20					
Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
CRG15	0.5	0.5	3	4	4
CRG20	0.5	0.5	3.5	5	5
CRG25	1.0	1.0	5	5	5.5
CRG30	1.0	1.0	5	5	6
CRG35	1.0	1.0	6	6	6.5
CRG45	1.0	1.0	7	8	8
CRG55	1.5	1.5	9	10	10
CRG65	1.5	1.5	10	10	12

(2) Tightening Torque of Mounting Bolts

Improper tightening of mounting bolts will seriously influence the accuracy of a linear guideway. The following tightening torque for the different sizes of bolt is recommended.

Table 2-10-21

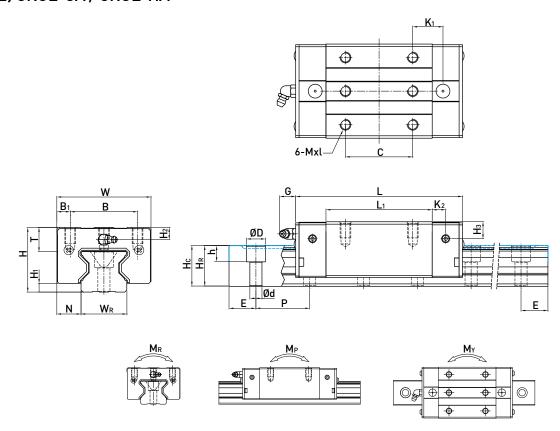

Size	Bolt size	Torque N-cm(kgf-cm)									
Size	Dott Size	Iron	Casting	Aluminum							
CRG15	M4×0.7P×16L	392 (40)	274 (28)	206 (21)							
CRG20	M5×0.8P×20L	883 (90)	588 (60)	441 (45)							
CRG25	M6×1P×20L	1373 (140)	921 (94)	686 (70)							
CRG30	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)							
CRG35	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)							
CRG45	M12×1.75P×35L	11772 (1200)	7840 (800)	5880 (600)							
CRG55	M14×2P×45L	15696 (1600)	10500 (1100)	7840 (800)							
CRG65	M16×2P×50L	19620 (2000)	13100 (1350)	9800 (1000)							


CRG Series

High Rigidity Roller Type with Cover Strip

2-10-11 Dimensions for CRG series

(1) CRGH-CA / CRGH-HA

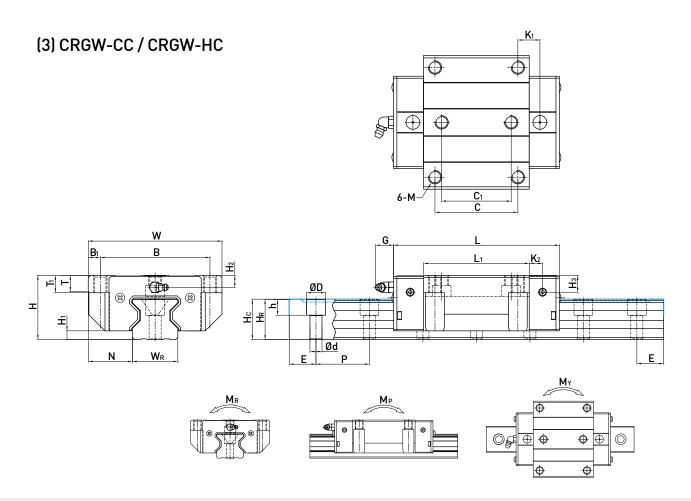

	Dimension of Assemble (mm)				Dimensions of Block (mm)											Dimensions of Rail (mm)							Mounting Bolt for Rail	Basic Dynamic Load	Static Load	Moment			Weight								
Model No.																								rtuit	Rating	Rating	M_R	M _P	M _Y	Block	Rail						
	Н	H ₁	N	W	В	B ₁	С	L	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	\mathbf{W}_{R}	H _R	H _C ³	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m					
CRGH15CA	28	4	9.5	34	26	4	26	45	68	13.4	4.7	5.3	M4 x 8	6	7.6	10.1	15	16.5	16.7	7.5	5.7	4.5	30	20	M4 x16	11.3	24	0.311	0.173	0.173	0.20	1.8					
CRGH20CA		_	40	, ,	00	,		57.5			,	. .	145 0	_			00	0.4	21 21.2 9	2 9.5 8.5	٥.	,	20	00	145 00	21.3	46.7	0.647	0.46	0.46	0.40	0.57					
CRGH20HA		5	12	44	32	6		77.5			6	5.3	M5 x 8	8	8.3	8.3	20	20 21			8.5	6	30	20	M5 x20	26.9	63	0.872	0.837	0.837	0.53	2.76					
CRGH25CA			10 5		٥٢	, -		64.5				10	M/ 0	٥٢	10.0	10	00	00 /	00.0	11	0	,	00	00	14/ 00	27.7	57.1	0.758	0.605	0.605	0.61						
CRGH25HA		5.5	12.5	48	35	6.5		81			7.25	12	IVIO X O	7.3	10.2	10	23	23.023	.0 23.0 11	11	'	/	30	20	M6 x20	33.9	73.4	0.975	0.991	0.991	0.75	3.08					
CRGH30CA		,	16		/0	10	40	71	109.8	23.5	0	10	140 40	٥٢	٥٠	10.0	00	00	00.0	1/	10	•	/0	00	NO 05	39.1	82.1	1.445	1.06	1.06	0.90	4 41					
CRGH30HA		6	16	60	40	10	60	93	131.8	24.5	8	12 1	M8 x10	7.5	7.5 11	J 10.3	10.3	28	28	28.2	14	12	9	40	20	M8 X25	48.1	105	1.846	1.712	1.712	1.16	4.41				
CRGH35CA		, -	10	70	F0	10	50	79	124	22.5	10	10				10 /						0.1	00.0	20. (4./	10	•	/0	00	NO 05	57.9	105.2	2.17	1.44	1.44	1.57	. 0.
CRGH35HA		6.5	18	/0	50	10	72	106.5	151.5	25.25		12	M8 X1Z	12	16	17.6	34	30.230.4	J.4 14 12	12	9	40 2	20	M8 X25	73.1	142	2.93	2.6	2.6	2.06	6.06						
CRGH45CA		0	20 F	0./	/0	10		106			10	10.0	M1017	1/	20	27	/ -	20	20.2	20	17	1/	F2 F	22 F	M100F	92.6	178.8	4.52	3.05	3.05	3.18	9.97					
CRGH45HA		ð	20.5	86	60	13		139.8			10	12.9	MIUXI7	16	20	24	40	38	38.2	20	17	14	32.3	22.5	M12 x35	116	230.9	6.33	5.47	5.47	4.13	7.77					
CRGH55CA		10	22.5	100	75	10 5		125.5			10.5	10.0	M1010	17 5	22	27.5	F2	, ,	,,,	22	20	1/	/0	20	M1//5	130.5	252	8.01	5.4	5.4	4.89	10.00					
CRGH55HA		10	23.5	100	/5	12.5		173.8			12.5	12.9	M1ZX18	17.5	5 22	27.5	53	3 44	44.2 2	.2 23 2	20	16	60	30	M14 X45	167.8	348	11.15	10.25	10.25	6.68	13.98					
CRGH65CA		10	31.5	10/	7/	25		160			15.0	10.0	M1/20	25	15	15	/2	F2	F2 2	2/	22	10	75	25	M1/F0	213	411.6	16.20	11.59	11.59	8.89	00.00					
CRGH65HA		12	31.5	126	76			223			15.8	12.9	M16x20	25	15	15	63	53 5	3 53.2	3.2 26	5 22	18	/5	35	M16x50	275.3	572.7	22.55	22.17	22.17	12.13	20.22					

Note : 1. 1 kgf = 9.81 N

2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: $C_{50R} = 1.23 \text{ x } C_{100R}$

3. Dimension $H_{\mathbb{C}}$ with cover strip.

(2) CRGL-CA / CRGL-HA

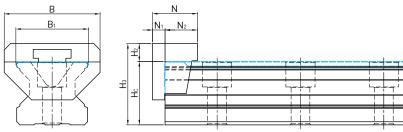


	Dimensions f Assembly (mm)						Dim	nensio	ons of	Bloc	k (m	ım)				Dimensions of Rail (mm)					Mounting Basic Bolt for Load Rail Rating	Load				Weight								
Model No.																										Rating	Rating		M _P	M _Y	Block	Rail		
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	Т	H ₂	H ₃	W _R	H_{R}	H _C ³	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m		
CRGL15CA	24	4	9.5	34	26	4	26	45	68	13.4	4.7	5.3	M4x5.5	6	3.6	6.1	15	16.5	16.7	7.5	5.7	4.5	30	20	M4x16	11.3	24	0.311	0.173	0.173	0.15	1.8		
CRGL20CA	20	_	12	,,	22	,	36	57.5	86	15.8	,	E 2	ME _v /	0	/ 2	/ 2	20	21	21.2	0 E	0 5	,	20	20	MEVOO	21.3	46.7	0.647	0.46	0.46	0.32	2.76		
CRGL20HA	30	Э	12	44	32	0	50	77.5	106	18.8	0	5.3	МЭХО	8	4.3	4.3	20	21	21.2	7.5	8.5	0	30	20	MOXZU	26.9	63	0.872	0.837	0.837	0.42	2.76		
CRGL25CA	2/		10 E	/0	25	/ [35	64.5	97.9	20.75	7 25	10	M/v0	0 5	/ 2	,	22	22 /	22.0	11	0	7	20	20	M/v20	27.7	57.1	0.758	0.605	0.605	0.51	3.08		
CRGL25HA		5.5	12.5	40	33	0.0	50	81	114.4	21.5	7.23	3 12	Z MOXO	7.5	0.2	0	23	.5 25.0	23.0	11	' '	/	30	20	J 1410X20	33.9	73.4	0.975	0.991	0.991	0.63	3.00		
CRGL30CA	4.2		14	۷.0	<i>(</i> n	10	40	71	109.8	23.5	0	12	Mov10	0.5	4 5	72	20	20	20.2	1.6	12	0	4.0	20	Mov25	39.1	82.1	1.445	1.06	1.06	0.80	4.41		
CRGL30HA		0	10	00	40	10	60	93	131.8	24.5	0	12	MOXIU	7.3	0.5	7.3	20	20	20.2	14	12	7	40	20	MOXZJ	48.1	105	1.846	1.712	1.712	1.03	4.41		
CRGL35CA		4.5	10	70	50	10		79			10	12	M8x12	12	Q	12.4	3/	3N 3	3U %	1.6	12	0	4.0	20	M8v25	57.9	105.2	2.17	1.44	1.44	1.27	6.06		
CRGL35HA		0.5	10	70	50	10		106.5			10	12	MOXIZ	12	,	12.0	54	30.2	30.4	14	12	,	40	20	MOXZJ	73.1	142	2.93	2.6	2.6	1.65	0.00		
CRGL45CA		Ω	20.5	9.4	40	12		106			10	12 0	M10v17	1.6	10	1.6	45	38	38 2	20	17	1./.	52 5 1	22 5	M12v35	92.6	178.8	4.52	3.05	3.05	2.47	9.97		
CRGL45HA		Ü	20.5	00	00	10		139.8			10	12.7	MITUXIT	10	10	14	45	30	30.2	20	17	14	JZ.J 2	.Z.J	MIZAGG	116	230.9	6.33	5.47	5.47	3.20	7.77		
CRGL55CA		10						125.5			12 5	12 9	M12v18	17 5	12	17 5	53	1.1.	44.2	23	20	16	40	30	M1/v/5	130.5	252	8.01	5.4	5.4	3.91	13.98		
CRGL55HA		10	10 23.5 100 75	23.5 1) 75 1	5 12.5		173.8			12.5	12.7	1112310	17.5	12	17.5	55	-4	44.2	23	20	10	00	50	14114743	167.8	348	11.15	10.25	10.25	5.32	15.70

Note: 1.1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: C_{50R} = 1.23 x C_{100R} 3. Dimension H_C with cover strip.

CRG Series

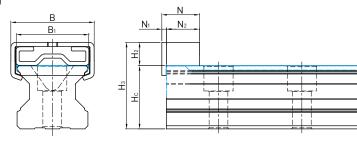
High Rigidity Roller Type with Cover Strip


	Dimension of Assemb							Dimensions of Block (mm)							Dimensions of Rail (mm)				Mounting Bolt for Rail	g Dynamio r Load	Load	Moment Moment			Weight									
Model No.																												Rating	Rating		M _P	M_{Y}	Block	Rail
	Н	H ₁	N	W	В	B ₁	С	C ₁	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	W _R	H_{R}	H _C ³	D	h	d	Р	E	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
CRGW15CC	24	4	16	47	38	4.5	30	26	45	68	11.4	4.7	5.3	M5	6	6.95	3.6	6.1	15	16.5	16.7	7.5	5.7	4.5	30	20	M4x16	11.3	24	0.311	0.173	0.173	0.22	1.8
CRGW20CC		_	21.5	/2	Εn	Е	/0	25		86	13.8	,	5.3	M/	0	10	/ 2	/ 2	20	21	21.2	0 E	0 E	,	20	20	M5x20	21.3	46.7	0.647	0.46	0.46	0.47	2.76
CRGW20HC		5	21.3	03	55	j.	40	33		106	23.8	0	0.3	MO	0	10	4.3	4.3	20	21	21.2	7.5	0.0	0	30	20	MIDXZU	26.9	63	0.872	0.837	0.837	0.63	2.70
CRGW25CC		5.5	23.5	70	57	4 5	/ E			97.9		7 25	12	МО	0 5	10	4.2		22	22 4	22.0	11	0	7	20	20	M6x20	27.7	57.1	0.758	0.605	0.605	0.72	3.08
CRGW25HC		5.5	23.3	70	37	0.5	43	40		114.4		1.23	12	MO	7.3	10	0.2	O	23	23.0	23.0	11	7	′	30	20	MOXZU	33.9	73.4	0.975	0.991	0.991	0.91	3.00
CRGW30CC	42	6	31	90	72	q	52	4.4		109.8		ρ	12	M10	95	10	45	73	28	28	28.2	1/	12	q	۷0	20	M8x25	39.1	82.1	1.445	1.06	1.06	1.16	4.41
CRGW30HC		Ü	51	70	12	,	52	44		131.8		Ü	12	14110	7.5	10	0.5	7.5	20	20	20.2	14	12	,	40	20	1410723	48.1	105	1.846	1.712	1.712	1.52	4.41
CRGW35CC		6.5	33	100	82	9	62	52		124	16.5	10	12	M10	12	13	9	12 6	34	30.2	30.4	14	12	9	40	20	M8x25	57.9	105.2	2.17	1.44	1.44	1.75	6.06
CRGW35HC		0.0			02	Ĺ	02			151.5	30.25						İ	12.0		00.2				Ĺ	-,0		110%20	73.1	142	2.93	2.6	2.6	2.40	0.00
CRGW45CC		8	37.5	120	100	10	80	60		153.2	21	10	12 9	M12	1/	15	10	1/4	45	38	38.2	20	17	1/	52 5	22 5	M12x35	92.6	178.8	4.52	3.05	3.05	3.43	9.97
CRGW45HC		ŭ	07.0	.20						187	37.9		,								00.2		.,		02.0		1112/00	116	230.9	6.33	5.47	5.47	4.57	
CRGW55CC		10	43.5	1/10	116	12	95			183.7		12 5	12 9	M1/ ₄	16	17	12	17 5	53	44	44.2	23	20	16	60	30	M14x45	130.5	252	8.01	5.4	5.4	5.43	13.98
CRGW55HC		10	.0.0	.40	113	12	, 3			232		.2.0	.2.7	. 114	10	17	12	.,.5	50	77	.7.2		20	10	00		.114,40	167.8	348	11.15	10.25	10.25	7.61	.0.70
CRGW65CC		12	53.5	170	1/,2	1/	110	82		232		15.8	12.9	M14	22	23	15	15	63	53	53.2	26	22	18	75	35	M16x50	213	411.6	16.20	11.59	11.59	11.63	20.22
CRGW65HC		12	55.5	170	142	14	110	UZ		295		15.0	14.7	1-110	22	23	13	13	00	55	JJ.Z	20	22	10	, 5	55	1-110,000	275.3	572.7	22.55	22.17	22.17	16.58	

Note: 1.1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: $C_{50R} = 1.23 \times C_{100R}$

^{3.} Dimension $H_{\mathbb{C}}$ with cover strip.

(4) Dimension of cover strip and plastic end jig


o plastic end jig (standard)

Model No.	H ₃	H _c ¹	H ₂	N	N ₁	N_2	В	B ₁
CRG15	21.2	16.7	4.5	13.0	3.7	9.3	20.0	16.0
CRG20	26.1	21.2	4.9	13.0	4	9.0	27.0	21.0
CRG25	28.9	23.8	5.1	15.0	4	11.0	31.5	24.0
CRG30	35.1	28.2	6.9	21.0	6	15.0	40.0	29.0
CRG35	39.1	30.4	8.7	21.5	6	15.5	46.0	35.0
CRG45	46.6	38.2	8.4	22.0	5.2	16.8	51.6	46.0
CRG55	54.3	44.2	10.1	22.5	7.7	14.8	62.0	54.0
CRG65	64.4	53.2	11.2	30.0	9.2	20.8	70.0	64.0

Note : 1. Dimension $H_{\mathbb{C}}$ with cover strip

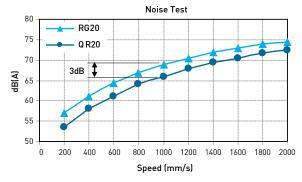
Metal end jig (optional)

Model No.	H ₃	H _c ¹	H ₂	N	N_1	N_2	В	B ₁
CRG15	20.5	16.7	3.8	15	2.2	12.8	21	15.8
CRG20	28.4	21.2	7.2	13	2.2	10.8	28	20.7
CRG25	33.8	23.8	10	15	2.2	12.8	30.7	23.9
CRG30	37.4	28.2	9.2	12	2.2	9.8	34	28.9
CRG35	41.6	30.4	11.2	18	2.2	15.8	40	34.8
CRG45	50.2	38.2	12	18	2.2	15.8	53.58	45.6
CRG55	55.4	44.2	11.2	18	2.2	15.8	58.6	53.7
CRG65	65.2	53.2	12	18	2.2	15.8	71.8	63.6

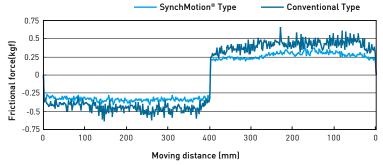
Note : 1. Dimension $H_{\mathbb{C}}\,$ with cover strip

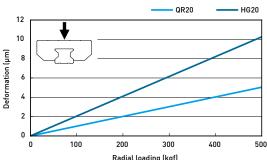
Roller Type

2-11 QR series - Roller Type Linear Guideway, with SynchMotion® Technology


QR series offers super high rigidity and very high load capacities. The QR series with SynchMotion® Technology offers low friction, smooth movement, quieter operation and longer running life. In the industry where high accuracy, low noise and high rigidity is required, the QR series is interchangeable with the RG series.

2-11-1 Advantages and features


(1) Super high load capacity in linear guideway, with the four rows of rollers arranged at a contact angle of 45-degrees, the QR series linear guideway has equal load ratings in the radial, reverse radial and lateral directions. The QR series has a higher load capacity in a smaller size than conventional, ball-type linear guideways.


(2) Low Noise Design With SynchMotion® technology, rolling elements are interposed between the partitions of SynchMotion® to provide improved circulation. Due to the elimination of contact between the rolling elements, collision noise and sound levels are drastically reduced.

(3) Smooth Movement In standard linear guideways, rolling elements on the load side of the guide block begin rolling and push their way through the raceway. When they contact other rolling elements they create counter-rotational friction. This results in a great variation of rolling resistance. The QR linear guideway, with SynchMotion® technology prevents this condition.

(4) The QR series is a type of linear guideway that uses rollers as the rolling elements. Elastic deformation of the linear contact surface, during load, is greatly reduced thereby offering greater rigidity and higher load capacities in all 4 load directions.

(5) Sample test

1. Nominal life test

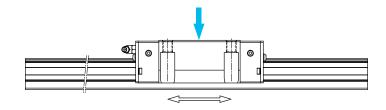


Table 2-11-1

Tested model 1: QRW20CC

Preload: ZA class Max speed: 28m/min Acceleration: 1G Stroke: 0.2m

Lubrication: grease held every 100 km

External: 8.6 kN

Traveling distance: 1024km

Test results:

The nominal life of QRW20 is 1000km. After traveling 1024km, fatigue flaking did not appear on the surface of the raceway or rollers. And roller chain is not broken in this case

2. Durability Test

Table 2-11-2

Tested model 2: QRH20CA Preload: Z0 class Max speed: 180m/min Acceleration: 3G Stroke: 0.23m

Oil feed rate: 0.14cm³/hr External: 0km (No loading) Traveling distance: 10586km

Test results:

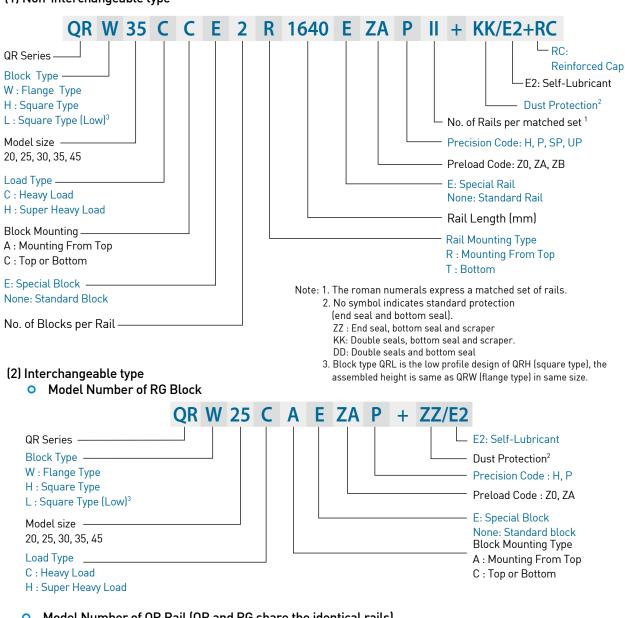
After traveling 10586km, fatigue flaking did not appear on the surface of the raceway or rollers. And roller chain is not broken in this case.

Note: The data listed are from samples.

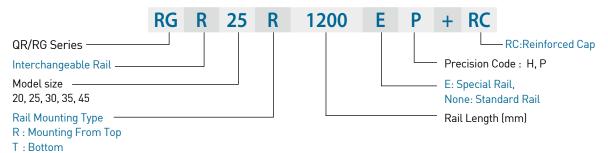
2-11-2 Construction of QR Series End Seal [Double seals and scraper] Grease nipple Rollers Circulation path The SynchMotion®

- Rolling circulation system: Block, Rail, End cap, Circulation path, rollers and the SynchMotion®.
- Lubrication system: Grease nipple and piping joint

Bottom seal


O Dust protection system: End seal, Bottom seal, Cap, Double seals and Scraper

Roller Type


2-11-3 Model Number of QR series

QR series linear guideways are classified into non-interchangeable and interchangeable types. The sizes of these two types are the same as one another. The main difference is that the interchangeable type of blocks and rails can be freely exchanged and they can maintain p-class accuracy. Because of strict dimensional control, the interchangeable type linear guideways are a wise choice for customers when rails do not need to be matched for an axis. The model number of the QR series identifies the size, type, accuracy class, preload class, etc.

(1) Non-interchangeable type

Model Number of QR Rail (QR and RG share the identical rails)

2-11-4 Types

(1) Block types

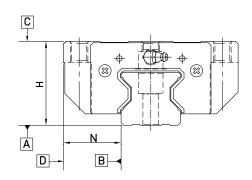
QR series offers two types of guide blocks, flange and square type. Because of the low assembly height and large mounting surface, the flange type is excellent for heavy moment load applications.

Table 2-11-3 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	QRH-CA QRH-HA		34 ↓ 70	100 ↓ 4000	 Automation Systems Transportation equipment CNC machining centers Heavy duty cutting machines CNC grinding machines Injection molding machines
Square (low)	QRL-CA QRL-HA		40 ↓	100 ↓ 4000	 Injection molding machines Plano millers Devices requiring high rigidity Devices requiring high load capacity Electric discharge machines
Flange	QRW-CC QRW-HC		30 ↓ 60	100 ↓ 4000	

(2) Rail types

In addition to the standard top mounting type, HIWIN also offers the bottom mounting type of rails.


Table 2-11-4 Rail Types

Roller Type

2-11-5 Accuracy Classes

The accuracy of the QR series can be classified into four classes: high (H), precision (p), super precision (Sp) and ultra precision (Up). Customers may choose the class by referencing the accuracy requirements of the applied equipment.

(1) Accuracy of non-interchangeable

Table 2-11-5 Accuracy Standards

Unit: mm

Item	QR - 20			
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Dimensional tolerance of width N	± 0.03	0 - 0.03	0 - 0.015	0 - 0.008
Variation of height H	0.01	0.006	0.004	0.003
Variation of width N	0.01	0.006	0.004	0.003
Running parallelism of block surface C to surface A		See	Table 2-11-11	
Running parallelism of block surface D to surface B		See	Table 2-11-11	

Table 2-11-6 Accuracy Standards

Unit: mm

Item	QR- 25, 30, 35	5		
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.015	0.007	0.005	0.003
Variation of width N	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A		See	Table 2-11-11	
Running parallelism of block surface D to surface B		See	Table 2-11-11	

Table 2-11-7 Accuracy Standards

Unit: mm

Item	QR - 45			
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Dimensional tolerance of width N	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02
Variation of height H	0.015	0.007	0.005	0.003
Variation of width N	0.02	0.01	0.007	0.005
Running parallelism of block surface C to surface A		See	Table 2-11-11	
Running parallelism of block surface D to surface B		See	Table 2-11-11	

(2) Accuracy of interchangeable

Table 2-11-8 Accuracy Standards		Unit: mm
Item	QR - 20	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.03	± 0.015
Dimensional tolerance of width N	± 0.03	± 0.015
Variation of height H	0.01	0.006
Variation of width N	0.01	0.006
Running parallelism of block surface C to surface A	See	Table 2-11-11
Running parallelism of block surface D to surface B	See	Table 2-11-11

Table 2-11-9 Accuracy Standards		Unit: mm
Item	QR- 25, 30, 35	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.04	± 0.02
Variation of height H	0.015	0.007
Variation of width N	0.015	0.007
Running parallelism of block surface C to surface A	See Tal	ble 2-11-11
Running parallelism of block surface D to surface B	See Tab	ole 2-11-11

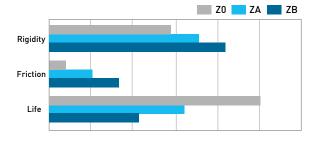
Table 2-11-10 Accuracy Standards		Unit: mm
Item	QR - 45	
Accuracy Classes	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.05	± 0.025
Dimensional tolerance of width N	± 0.05	± 0.025
Variation of height H	0.015	0.007
Variation of width N	0.02	0.01
Running parallelism of block surface C to surface A	See 1	able 2-11-11
Running parallelism of block surface D to surface B	See 1	able 2-11-11

Roller Type

(3) Accuracy of running parallelism

Table 2-11-11 Accuracy of Running Parallelism

	Accuracy (µm)			
Rail Length (mm)	H	Р	SP	UP
~ 100	7	3	2	2
100 ~ 200	9	4	2	2
200 ~ 300	10	5	3	2
300 ~ 500	12	6	3	2
500 ~ 700	13	7	4	2
700 ~ 900	15	8	5	3
900 ~ 1,100	16	9	6	3
1,100 ~ 1,500	18	11	7	4
1,500 ~ 1,900	20	13	8	4
1,900 ~ 2,500	22	15	10	5
2,500 ~ 3,100	25	18	11	6
3,100 ~ 3,600	27	20	14	7
3,600 ~ 4,000	28	21	15	7


2-11-6 Preload

A preload can be applied to each guideway using oversized rollers. Generally, a linear motion guideway has negative clearance between the raceway and rollers to improve stiffness and maintain high precision. The QR series linear guideway offers three standard preloads for various applications and conditions.

Table 2-11-12

Class	Code	Preload	Condition
Light Preload	Z0	0.02C~ 0.04C	Certain load direction, low impact, low precision required
Medium Preload	ZA	0.07C~0.09C	High rigidity required, high precision required
Heavy Preload	ZB	0.12C~ 0.14C	Super high rigidity required, with vibration and impact

The figure shows the relationship between the rigidity, friction and nominal life. A preload no larger than ZA would be recommended for smaller model sizes to avoid over-preload affecting the life of the guideway.

2-11-7 Mounting location

The standard location of the grease fitting is at both ends of the block, but the nipple can be mounted in the side or the top of block. For lateral installation, we recommend that the nipple be mounted at the non-reference side, otherwise please contact us. It is possible to carry out the lubrication by using an oil-piping joint. The figure shows the locations of the grease fitting.

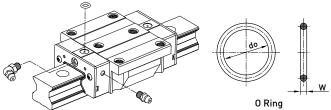
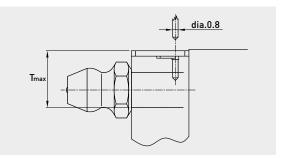
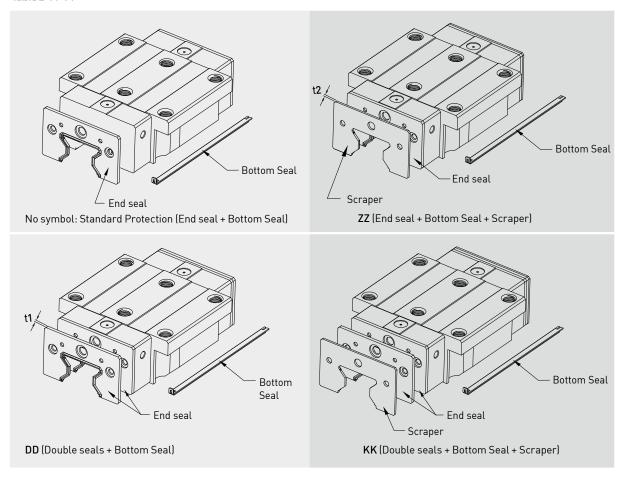



Table 2-11-13 O-Ring size and max. permissible depth for piercing

Size	0-Ring		Lube hole at top: max. permissible depth for piercing
	do (mm)	W (mm)	T _{max} (mm)
QR 20	2.5±0.15	1.5±0.15	4
QR 25	7.5±0.15	1.5±0.15	5.8
QR 30	7.5±0.15	1.5±0.15	6.2
QR 35	7.5±0.15	1.5±0.15	8.65
QR 45	7.5±0.15	1.5±0.15	9.5



2-11-8 Dust Proof Accessories

(1) Codes of accessories

If the following accessories are needed, please add the code followed by the model number.

Table 2-11-14

Roller Type

(2) End seal and bottom seal

To prevent life reduction caused by iron chips or dust entering the block.

(3) Double seals

Enhances the wiping effect, foreign matter can be completely wiped off.

Table 2-11-15 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
QR20 ES	2.2	QR35 ES	2.5
QR25 ES	2.2	QR45 ES	3.6
QR30 ES	2.4		

(4) Scraper

The scraper removes high-temperature iron chips and larger foreign objects.

Table 2-11-16 Dimensions of scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
QR20 SC	1.0	QR35 SC	1.5
QR25 SC	1.0	QR45 SC	1.5
QR30 SC	1.5		

(5) Dimensions of block equipped with the dustproof parts

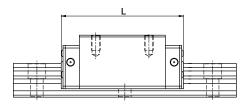


Table 2-11-17 Overall block length

unit: mm

Size	Overall block length	(L)		
5126	SS	ZZ	DD	KK
QR20C	86.0 (88.0)	88.0 (92.4)	90.4 (92.4)	92.4 (96.8)
QR25C	97.7 (101.5)	99.9 (105.9)	102.3 (105.9)	104.3 (110.3)
QR25H	112.9 (116.5)	114.9 (120.9)	117.3 (120.9)	119.3 (125.3)
QR30C	109.8 (113.4)	112.8 (118.8)	114.6 (118.2)	117.6 (123.6)
QR30H	131.8 (135.4)	134.8 (140.8)	136.6 (140.2)	139.6 (145.6)
QR35C	124.0 (129.4)	127.0 (135.0)	129.0 (134.4)	132.0 (140.0)
QR35H	151.5 (156.9)	154.5 (162.5)	156.5 (161.9)	159.5 (167.5)
QR45C	153.2 (156.4)	156.2 (164.2)	160.4 (163.6)	163.4 (171.4)
QR45H	187.0 (190.2)	190.0 (198.0)	194.2 (197.4)	197.2 (205.2)

 $Note: The \ marking \ of \ "(\ \)" \ denotes \ the \ maximum \ block \ length \ with \ screws, \ lips \ of \ end \ seals, \ etc.$

2-11-9 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-11-18 Seal Resistance

Size	Resistance N (kgf)	Size	Resistance N (kgf)
QR 20 ES	2.45 (0.25)	QR 35 ES	3.53 (0.36)
QR 25 ES	2.74 (0.28)	QR 45 ES	4.21 (0.43)
QR 30 ES	3.31 (0.31)		

2-11-10 The Accuracy Tolerance of Mounting Surface

(1) The accuracy tolerance of rail-mounting surface

As long as the accuracy requirements of the mounting surfaces shown in the following tables are met, the high accuracy, high rigidity and long life of the QR series linear guideway will be maintained without any difficulty.

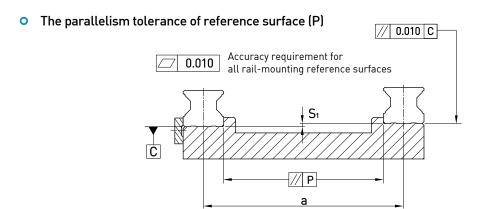


Table 2-11-19 Max. Parallelism Tolerance (P)

unit: µm

Size	Preload classes		
Size	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)
QR20	8	6	4
QR25	9	7	5
QR30	11	8	6
QR35	14	10	7
QR45	17	13	9

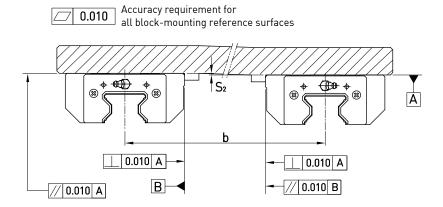
• The accuracy tolerance of reference surface height (S₁)

 $S_1 = a \times K$

 S_1 : Max. tolerance of height

a: Distance between paired rails

 $K: Coefficient\ of\ tolerance\ of\ height$

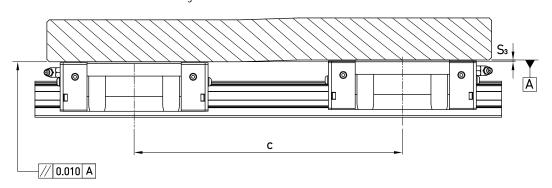

Table 2-11-20 Coefficient of tolerance of height

C:	Preload classes		
Size	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)
K	2.2×10 ⁻⁴	1.7×10-4	1.2×10-4

Roller Type

(2) The accuracy tolerance of block-mounting surface

• The tolerance of the height of reference surface when two or more pieces are used in parallel (S_2)



 $S_2 = b \times 4.2 \times 10^{-5}$

 S_2 : Max. tolerance of height b : Distance between paired blocks

• The tolerance of the height of reference surface when two or more pieces are used in parallel (S₃)

Accuracy requirement for all block-mounting reference surfaces

 $S_3 = c \times 4.2 \times 10^{-5}$

S₃: Max. tolerance of height

c : Distance between paired blocks

2-11-11 Cautions for Installation

(1) Shoulder heights and fillets

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

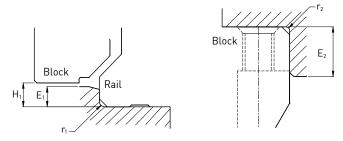


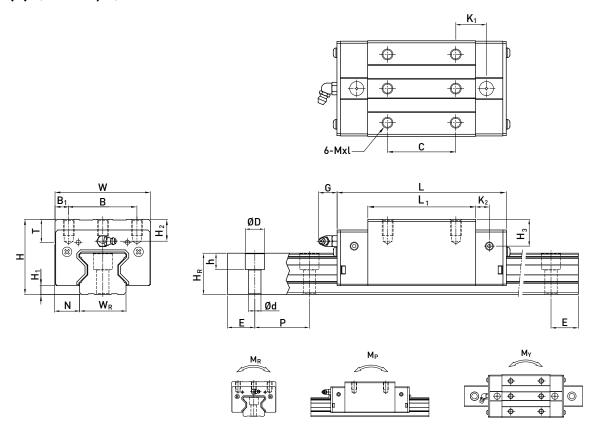
Table 2-11-21

Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
QR20	0.5	0.5	3.5	5	5
QR25	1.0	1.0	5	5	5.5
QR30	1.0	1.0	5	5	6
QR35	1.0	1.0	6	6	6.5
QR45	1.0	1.0	7	8	8

(2) Tightening Torque of Mounting Bolts

Improper tightening of mounting bolts will seriously influence the accuracy of a linear guideway. The following tightening torque for the different sizes of bolt is recommended.

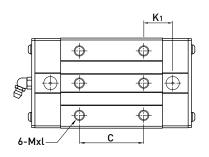
Table 2-11-22

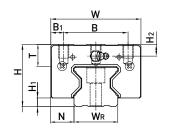

10010 2 11 22				
Size	Bolt size	Torque N-cm(kgf-cm)		
3126	Dott Size	Iron	Casting	Aluminum
QR20	M5×0.8P×20L	883 (90)	588 (60)	441 (45)
QR25	M6×1P×20L	1373 (140)	921 (94)	686 (70)
QR30	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)
QR35	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)
QR45	M12×1.75P×35L	11772 (1200)	7840 (800)	5880 (600)

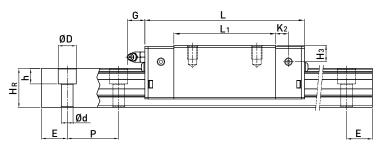
Roller Type

2-11-12 Dimensions for QR series

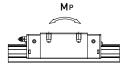
(1) QRH-CA / QRH-HA

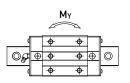


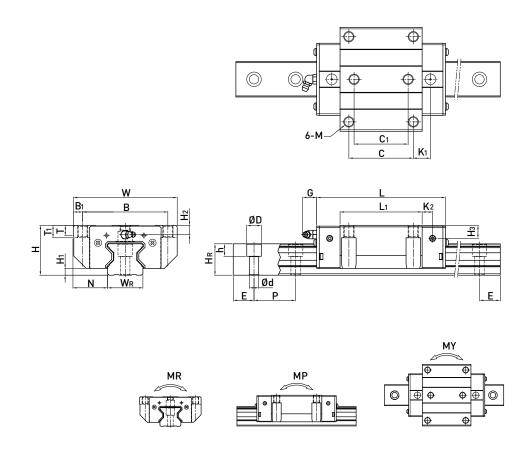

	of A	sse	ensions sembly Dimensions of Block (mm) nm)											Dimensions of Rail (mm)							Mounting Bolt for Rail	Basic Dynamic Load	Load	Moment Moment			Weight				
Model No.			N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	Mxl	T H ₂ H ₃ V		W_R	H_R	D	h d P E			E			Rating C ₀ (kN)	M _R	M _P	M _Y	Block kg	Rail	
QRH20CA	34	5	12	44	32	6	36	57.5	86	15.8	6	5.3	M5 x 8	8	8.3	8.3	20	21	9.5	8.5	6	30	20	M5 x20	26.3	38.9	0.591	0.453	0.453	0.40	2.76
QRH25CA	/0		10 F	/ 0	٥٢	, ,		66	97.9	20.75	7.05	10	M/0	٥٢	10.0	10	22	22./	11	0	7	20	20	M/ .:20	38.5	54.4	0.722	0.627	0.627	0.60	3.08
QRH25HA	40	5.5	12.5	48	33	6.5		81	112.9		7.25	12	Мοхα	9.5 10.2 10		10	23	23.6	11	9	/	30 20		M6 x20	44.7	65.3	0.867	0.907	0.907	0.74	3.08
QRH30CA	45		16	40	<i>(</i> n	10		71	109.8	23.5	8	12	M8 x10	0 5	0 5	10.2	20	20	1.6	12	9	40	20	M8 x25	51.5	73.0	1.284	0.945	0.945	0.89	4.41
QRH30HA	43	0	10	00	40	10		93	131.8	24.5	0	12	MOXIU	7.5	7.0	10.3	20	20	14	12	7	40	20	INIO XZO	64.7	95.8	1.685	1.63	1.63	1.15	4.41
QRH35CA		6.5	18	70	En	10		79	124		10	10	M0 v12	10	1/	10 /	2/	20.2	1/	12	9	40	20	MOVE	77.0	94.7	1.955	1.331	1.331	1.56	6.06
QRH35HA	55	0.0	10	70	50	10		106.5	151.5	25.25	10	0 12 M8 x12		12	10	17.0	34	30.2	14	12	7	40	20	M8 x25	95.7	126.3	2.606	2.335	2.335	2.04	6.06
QRH45CA	70	0	20.5	0.4	40	12		106	153.2		10	12.0	M10v17	1.4	20	2/	/ E	20	20	17	1.6	52 F	22 F	M12 v2E	123.2	156.4	3.959	2.666	2.666	3.16	9.97
QRH45HA	70	ď	20.5	00	00	13		139.8	187		10	12.9 M10x17 1		16	16 20 24		40	38	20	0 17 14		4 52.522.		5 M12 x35	150.8	208.6	5.278	4.694	4.694	4.10	9.97


Note : 1. 1 kgf = 9.81 N

^{2.} The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: $C_{50R} = 1.23 \text{ x } C_{100R}$


(2) QRL-CA / QRL-HA





	of A	Asse	sions		Dimensions of Block (mm) Dimensions of Rail (mm)											Mounting Bolt for	Basic Dynamic Load	Basic Static Load	Static Rated Moment			Weight									
Model No.		(mn	nJ																Rail	Rating	Rating	\mathbf{M}_{R}	M _P	M _Y	Block	Rail					
	Н	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K_2	G	Mxl	Т	H ₂	H ₃	W_R	H_R	D	h	d	Р	Ε	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m
QRL20CA	30	5	12	44	32	6	36	57.5	86	15.8	6	5.3	M5x6	8	4.3	4.3	20	21	9.5	8.5	6	30	20	M5x20	26.3	38.9	0.591	0.453	0.453	0.32	2.76
QRL25CA	0./		10.5	/ 0	٥٦			66	97.9			10	14/ 0	٥٦	, 0	,	00	00.7		•	-	00	00	M/ 00	38.5	54.4	0.722	0.627	0.627	0.50	0.00
QRL25HA	36	5.5	12.5	48	35	6.5	50	81	112.9		7.25	12	M6x8	9.5	6.2	6	23	23.6	11	9	/	30	20	M6x20	44.7	65.3	0.867	0.907	0.907	0.62	3.08
QRL30CA	42	,	16	60	40	10	40	71	109.8	23.5	8	12	M8x10	0 E	/ =	72	20	20	14	12	9	40	20	M8x25	51.5	73.0	1.284	0.945	0.945	0.79	4.41
QRL30HA	42	0	16	60	40	10	60	93	131.8	24.5	ð	12	MOXIU	9.5	6.5	7.3	28	28	14	12	9	40	20	MRXZD	64.7	95.8	1.685	1.63	1.63	1.02	4.41
QRL35CA	/0	6.5	18	70	50	10	50	79	124	22.5	10	12	M8x12	12	9	10 /	2/	20.2	1/	12	9	40	20	M8x25	77.0	94.7	1.955	1.331	1.331	1.26	6.06
QRL35HA	48	6.5	18	70	อบ	10	72	106.5	151.5	25.25	10	12	MOXIZ	12	7	12.6	34	30.2	14	12	9	40	20	MRXZD	95.7	126.3	2.606	2.335	2.335	1.63	6.06
QRL45CA	/ 0	0	20.5	0./	/ 0	10	60	106	153.2	31	10	10.0	M1017	1/	10	1/	/ -	20	20	17	1/	F2 F	22 F	M100F	123.2	156.4	3.959	2.666	2.666	2.45	0.07
QRL45HA	60	ğ	20.5	86	60	13	80	139.8	187	37.9	10	12.9	M10x17	16	10	14	45	38	20	17	14	ວ∠.5.	22.5	M12x35	150.8	208.6	5.278	4.694	4.694	3.17	9.97

Note: 1.1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: C_{50R} = 1.23 x C_{100R}

Roller Type

(3) QRW-CC / QRW-HC

	of A		sions mbly					ı	Dimer	nsions	s of B	lock	(mr	n)					Di	mer	sio	ns o	f Rai	il (m	m)	Mounting Bolt for Rail	Load	Oynamic Load	Dynamic Load	Dynamic Load	Static Load	Static Rated Moment		We	ight
Model No.																											Rating	Rating	M_R	M _P	M _Y	Block	Rail		
	Н	H ₁	N	W	В	B ₁	С	C ₁	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	W _R	H _R	D	h	d	P	E	(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m		
QRW20CC	30	5	21.5	63	53	5	40	35	57.5	86	13.8	6	5.3	M6	8	10	4.3	4.3	20	21	9.5	8.5	6	30	20	M5x20	26.3	38.9	0.591	0.453	0.453	0.47	2.76		
QRW25CC		5 5	23.5	70	57	4 5	45	<i>(</i> n	66	97.9	15.75	7 25	12	M8	0.5	10	۷ ၁		22	22 4	11	0	7	30	20	M6x20	38.5	54.4	0.722	0.627	0.627	0.71	3.08		
QRW25HC		5.5	23.3	70	37	6.5	45	40	81	112.9		7.23	12	IVIO	7.5	10	0.2	0	23	23.0	11	7	/	30	20	MOXZU	44.7	65.3	0.867	0.907	0.907	0.90	3.08		
QRW30CC		6	31	on.	72	0	52	44	71	109.8	17.5	8	12	M10	0.5	10	45	72	28	28	14	12	9	40	20	M8x25	51.5	73.0	1.284	0.945	0.945	1.15	4.41		
QRW30HC		U	JI	70	12	,	JZ	44	93	131.8	28.5	Ü	12	14110	7.5	10	0.5	7.5	20	20	14	12	,	40	20	MOXZJ	64.7	95.8	1.685	1.63	1.63	1.51	4.41		
QRW35CC		4 5	33	100	02	0	42	52		124	16.5	10	12	M10	12	12	0	12.6	2/	20.2	1.6	12	0	40	20	M8x25	77.0	94.7	1.955	1.331	1.331	1.74	6.06		
QRW35HC		0.0	აა	100	02	7	02		106.5	151.5	30.25	10	12	MIIU	12	13	7	12.0	34	30.2	14	12	7	40	20	MOXZO	95.7	126.3	2.606	2.335	2.335	2.38	6.06		
QRW45CC		0	27.5	100	100	10	0.0	/ 0		153.2	21	10	10.0	N410	1/	15	10	1/	/ F	20	20	17	1/	רח ר	22 5	M100F	123.2	156.4	3.959	2.666	2.666	3.41	9.97		
QRW45HC		Q	37.5	120	100	10	60		139.8	187	37.9	10	12.9	IVI I Z	14	13	10	14	45	38	20	17	14	JZ.5	ZZ.3	M12x35	150.8	208.6	5.278	4.694	4.694	4.54	9.97		

Note: 1.1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: C_{50R} = 1.23 x C_{100R}

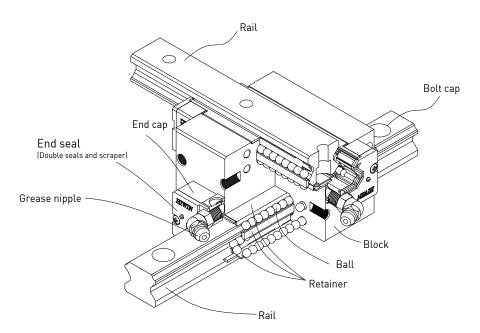
2-12 AG Series - Angle Linear Guideway

AG series angle linear guideway is designed with circular-arc groove and the same structure as HG series, and are ground with special procedure to make sure the X-Y translation is in high perpendicularity. The integrated design increases the stiffness by 50%, reduces weight and lowers the assembly height by 15%, which contributes to higher precision translation and achieves higher production quality.

2-12-1 Product Features

(1)More compact design

Eliminates fastener plate for saving equipment weight and increasing work space.


(2) High positional accuracy

Two rails are machined with high precision in relative straightness. Extremely high accuracy in verticality is achieved.

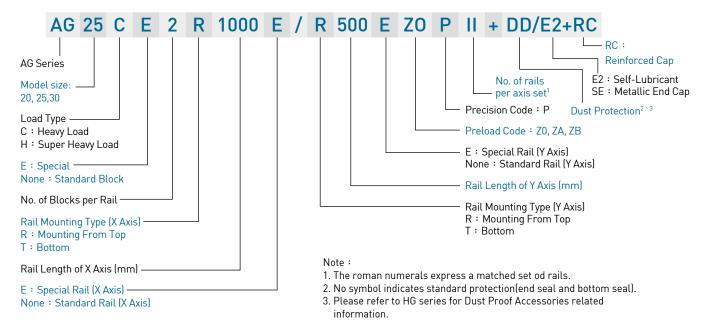
(3) High torsional rigidity

The rigidity of AG block is 50% higher than a combination of two HG blocks which secured back to back together.

2-12-2 Construction of AG Series

- Rolling circulation system: Block, Rail, End Cap and Retainer
- Lubrication system: Grease Nipple and Piping Joint
- O Dust protection system: End seal, Bottom Seal, Bolt Cap, Double Seals and Scraper

AG Series


Angle Linear Guideway

2-12-3 Model Number of AG Series

The AG series linear guideway only has non-interchangeable type to ensure perpendicularity of two rails. If other accuracy grade is required, please contact HIWIN.

The model number of AG series contains the size, type, accuracy and preload class, etc.

Non-interchangeable type

2-12-4 Types

(1) Block Types

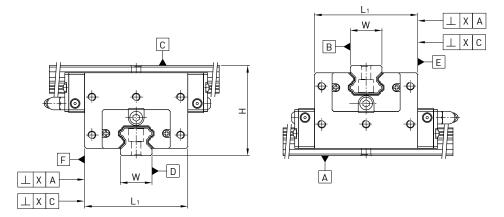
HIWIN provides AG series linear guideway in cross and rectangular type, which has high accuracy in perpendicularity of two rails.

Table 2-12-1 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Application
Square	AG-H		57 ↓ 82	100 ↓ 1200	 Sliding Head Lathe (Swiss lathe) Vibration Test Machine Automated Robot Dispenser XY moving platform Measuring instrument
lare	AG-C		70 ↓ 82	100 ↓ 1200	Vertical LatheSlant Bed Lathes

(2) Rail types

Besides the standard top mounting type, the bottom mounting type is also available.


Table 2-12-2 Rail Types

Note: Please refer to the HG series for relevant rail dimensions.

2-12-5 Accuracy Classes

Accuracy of AG series linear guideway has only one accuracy grade to ensure the perpendicularity of two rails. If other accuracy grade is required, please contact HIWIN.

(1) Accuracy of non-interchangeable guideways

Table 2-12-3 Accuracy Standards

Unit: mm

Item	AG20	AG25	AG30
Accuracy Classes	Precision (P)	Precision (P)	Precision (P)
Pair variation of height H	0.01	0.01	0.01
Perpendicularity of rail surface B to rail surface D	0.005 / Block length*1	0.008 / Block length*1	0.01 / Block length*1
Running parallelism of rail surface C to rail surface A		See Table 2-12-4	
Running parallelism of rail surface A to rail surface C		See Table 2-12-4	
Running parallelism of block surface F to rail surface D		See Table 2-12-4	
Running parallelism of block surface E to rail surface B		See Table 2-12-4	

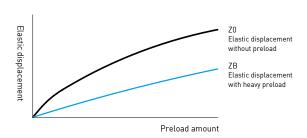
Note: *1

Note. 1	
Size	Block length (mm)
AG20H	65.2
AG25C	58
AG25H	78.6
AG30C	70
AG30H	93

AG Series

Angle Linear Guideway

(2) Accuracy of running parallelism


Table 2-12-4 Accuracy of Running Parallelism

Rail Length (mm)	Accuracy (µm) P	Rail Length (mm)	Accuracy (µm) P
~ 100	2	500 ~ 700	4
100 ~ 200	2	700 ~ 900	5
200 ~ 300	3	900 ~ 1,100	6
300 ~ 500	3	1,100 ~ 1,200	7

2-12-6 Preload

(1) Definition

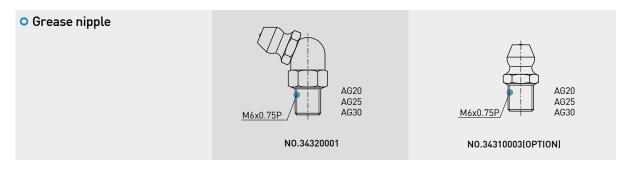
A preload can be applied to each guideway. Oversized balls are used. Generally, a linear motion guideway has a negative clearance between groove and balls in order to improve stiffness and maintain high precision. The figure shows the load is multiplied by the preload, the rigidity is doubled and the deflection is reduced by one half.

(2) Preload classes

HIWIN offers three classes of standard preload for various applications and conditions.

Table 2-12-5 Preload Classes

Table 2-12-3	rieloau	Classes		
Class	Code	Preload	Condition	Examples of Application
Light Preload	Z0	0~ 0.02C	Certain load direction, low impact, low precision required	Transportation devices, auto-packing machines, X-Y axis for general industrial machines, welding machines, welders
Medium Preload	ZA	0.05C~0.07C	High precision required	Machining centers, Z axis for general industrial, machines, EDM, NC lathes, Precision X-Y tables, measuring equipment
Heavy Preload	ZB	0.10C~ 0.12C	High rigidity required, with vibration and impact	Machining centers, grinding machines, NC lathes, horizontal and vertical milling machines, Z axis of machine tools, Heavy cutting machines
Class	Non-Int	erchangeabl	e Guideway	


Class Non-Interchangeable Guideway

Preload classes Z0, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

2-12-7 Lubrication

(1) Grease

Mounting location

The standard location of the grease fitting is at both ends of the block, the nipple can be mounted at each side of block. For lateral installation, we recommend that the nipple be mounted at the non-reference side, otherwise please contact us. It is possible to perform lubrication by using the oil-piping joint.

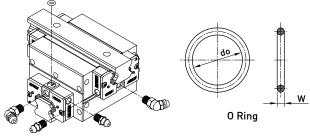
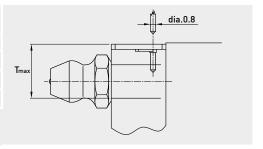
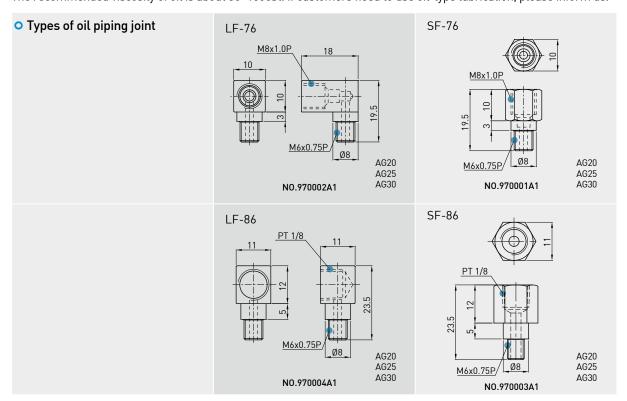



Table 2-12-6 O-Ring size and max. permissible depth for piercing

Size	0-Ring		Lube hole at top: max. permissible depth for piercing
	do (mm)	W (mm)	T _{max} (mm)
AG 20	4.5±0.15	1.5±0.15	5.7
AG 25	4.5±0.15	1.5±0.15	5.8
AG 30	4.5±0.15	1.5±0.15	6.3

• The lubricant amount for a block filled with grease

Table 2-12-7 The lubricant Amount for a Block Filled with Grease


Size	Heavy load (cm³)	Super heavy load (cm³)
AG 20	4	6
AG 25	10	12
AG 30	14	16

Frequency of replenishment

Check the grease every 100 km, or every 3-6 months.

(2) Oil

The recommended viscosity of oil is about 30~150cSt. If customers need to use oil-type lubrication, please inform us.

AG Series

Angle Linear Guideway

(3) Dimensions of block equipped with the parts

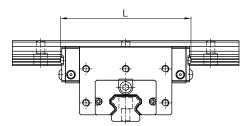


Table 2-12-8 Overall block length

unit: mm

Size	Overall block	Overall block length (L)								
	SS/SH	ZZ/ZH	DD/DH	KK/KH	SW	ZW				
*AG20H	92.2 (94.0)	97.2 (99.2)	97.5 (99.0)	102.2 (104.2)	93.2 (93.2)	101.0 (102.4)				
*AG25C	84.0 (85.0)	89.0 (91.0)	89.0 (90.0)	94.0 (96.0)	85.0 (85.0)	92.8 (94.8)				
*AG25H	104.6 (105.6)	109.6 (111.6)	109.6 (110.6)	114.6 (116.6)	105.6 (105.6)	113.4 (115.4)				
*AG30C	97.4 (99.4)	105.4 (107.4)	104.8 (106.8)	112.8 (114.8)	99.0 (100.4)	107.2 (109.2)				
*AG30H	120.4 (122.4)	128.4 (130.4)	127.8 (129.8)	135.8 (137.8)	122.0 (123.4)	130.2 (132.2)				

Note: 1. For the marking of "*", it means this specification is available for SH/ZH/DH/KH dust proof accessories.

2-12-8 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-12-9 Seal Resistance

Size	Resistance N (kgf)
AG20	2.75 (0.28)
AG25	3.14 (0.32)
AG30	3.53 (0.36)

Note: 1. 1kgf=9.81N

2-12-9 The Accuracy Tolerance of Mounting Surface

Because of the circular-arc contact design, the AG linear guideway can compensate for some surface-error on installation and still maintain smooth linear motion.

As long as the accuracy requirements for the mounting surface are followed, high accuracy and rigidity of linear motion of the guideway can be obtained without any difficulty. For fast installation and smooth movement, HIWIN offers the normal clearance type of preload to customers of its high absorption ability of the deviation in mounting surface accuracy.

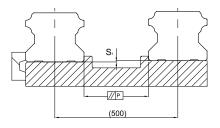


Table 2-12-10 Max. Parallelism Tolerance (P)

unit: µm

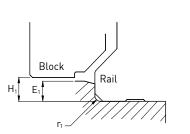
Size	Preload classes		
5126	Z0	ZA	ZB
AG20	25	20	18
AG25	30	22	20
AG30	40	30	27

^{2.} The marking of "[]" denotes the maximum block length with screws, lips of end seals, etc.

 $^{2. \} Please in form \ HIWIN \ if low friction \ request \ is \ required.$

Table 2-12-11 Max. Tolerance of Reference Surface Height (S₁)

unit: µm


Size	Preload classes							
312e	Z 0	ZA	ZB					
AG20	130	85	50					
AG25	130	85	70					
AG30	170	110	90					

Note: Permissible value is proportional to the axial distance

2-12-10 Cautions for Installation

(1) Shoulder heights and fillets

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

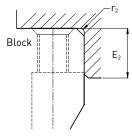


Table 2-12-12 Shoulder Heights and Fillets

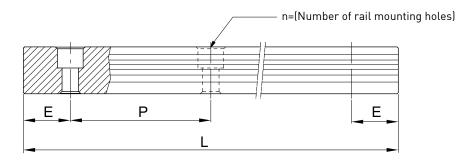
Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height beside the rail E ₁ (mm)	Shoulder height beside the block E ₂ (mm)	Clearance under block H ₁ (mm)
AG20	0.5	0.5	3.5	5.0	4.6
AG25	1.0	1.0	5.0	5.0	5.5
AG30	1.0	1.0	5.0	5.0	6.0

(2) Tightening Torque of Bolts for Installation

Improper tightening of bolts will seriously influence the accuracy of Linear Guideway installation. The following tightening torques for different sizes of bolts are recommended.

Table 2-12-13 Mounting Torque

	-									
Size	Bolt size	Torque N-cm (kgf-cm)								
	Dott Size	Iron	Casting	Aluminum						
AG 20	M5×0.8P×16L	883(90)	588(60)	441(45)						
AG 25	M6×1P×20L	1373(140)	921(94)	686(70)						
AG 30	M8×1.25P×25L	3041(310)	2010(205)	1470(150)						


Note:1 kgf=9.81 N

AG Series

Angle Linear Guideway

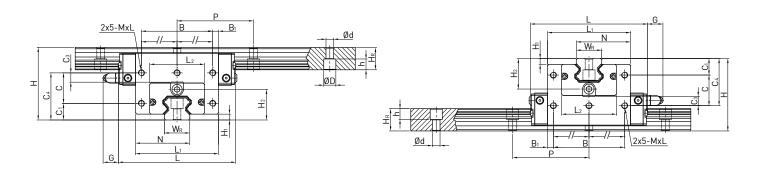
2-12-11 Standard and Maximum Lengths of Rail

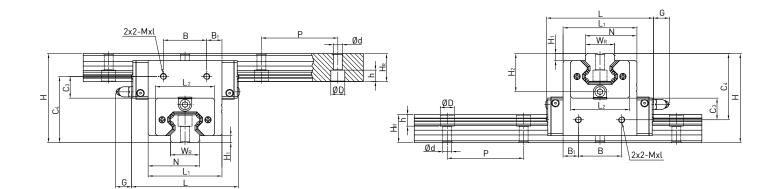
HIWIN offers standard rail lengths for customer needs. For non-standard E-values, the recommended dimension should no greater than 1/2 of the pitch (P) dimension. This will prevent an unstable rail end.

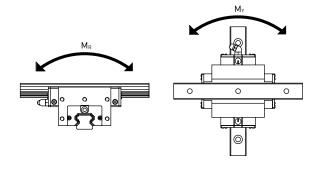
$$L = (n-1) \times P + 2 \times E$$
 Eq. 2.1

- L : Total length of rail (mm)
- n: Number of mounting holes
- P: Distance between any two holes (mm)
- E: Distance from the center of the last hole to the edge (mm)

Table 2-12-14 Rail Standard Length and Max. Length


unit: mm


			unit. min		
Item	AG20	AG25	AG30		
	220(4)	220(4)	280(4)		
	280(5)	280(5)	440(6)		
	340(6)	340(6)	600(8)		
Standard Length L(n)	460(8)	460(8)	760(10)		
	640(11)	640(11)	1,000(13)		
	820(14)	820(14)			
	1,000(17)	1,000(17)			
Pitch (P)	60	60	80		
Distance to End (E _s)	20	20	20		
Max. Standard Length	1,180(19)	1,180(19)	1,180(19)		
Max. Length	1,200	1,200	1,200		


 $Note: 1.\ Tolerance\ of\ E\ value\ for\ standard\ rail\ is\ 0.5 \sim -0.5\ mm.\ Tolerance\ of\ E\ value\ for\ jointed\ rail\ is\ 0 \sim -0.3\ mm.$

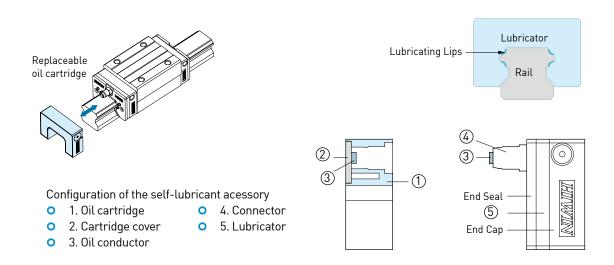
- $2. \ Maximum \ standard \ length \ means \ the \ max. \ rail \ length \ with \ standard \ E \ value \ on \ both \ sides.$
- 3. If different E value is needed, please contact HIWIN.
- 4. AG20/25 of stainless steel is supplied with the maximum length of 1200mm.

2-12-12 Dimensions for AG Series

Model No.		mens Asser (mm	mbly	Dimensions of Block (mm)								Dimensions of Rail (mm)						Basic Dynamic Load Rating	Basic Static Load Rating	tatic Static Rated oad Moment											
	н	H ₁	N	L	L ₁	L ₂	K ₁	K_2	В	B ₁	С	C ₁	C ₃	C ₄	Mxl	H ₂	G	\mathbf{W}_{R}	H _R	D	h	d	Р	C[kN]	C ₀ [kN]	M _R	M _Y				
AG20H	57	4.6	42.6	92.2	65.2	43	5	6	56	4.6	24	13	7.2	37	M5x8	24	12	20	17.5	9.5	8.5	6	60	32.7	47.96	0.35	0.35				
AG25C	70	5.5	40.5	84	58	46.4	46.4 4.2	6	, 34	12	-	-	16.2	52	M6x10	M6x10 30	0 12	23 2	22	11	9	7	60	34.9	52.82	0.42	0.33				
AG25H	70	5.5	50.8	104.6	78.6	40.4	4.2	0	64	7.3	26	18	8.2	44						11	7	,	80	42.2	69.07	0.56	0.57				
AG30C	82	6	49	97.4	70	F0	F0	F0	F0	F 0F	F 0F	,	40	15	-	-	19.2	61	14/ 10	50	10			14	40	•	00	48.5	71.87	0.66	0.53
AG30H	82	6	60.5	120.4	93	28	5.25	0	76	8.5	32	21	11.2	53	M6x10 58	28	12	28	26	14	12	9	80	58.6	93.99	0.88	0.92				

Note: 1 kgf = 9.81 N

E2 Type


Self Lubrication Kit

2-13 E2 Type - Self lubrication Kit for Linear Guideway

2-13-1 Construction of E2 Type

E2 self-lubricating linear guideway contains a lubricator between the end cap and end seal. Outside of the block is equipped with a replaceable oil cartridge, the configuration of which is listed below.

Lubrication oil flows from the replaceable oil cartridge to the lubricator and then lubricates grooves of rails. The Oil cartridge comprises a oil conductor with 3D structure that enables the lubricator to contact oil despite that blocks are placed at a random position, and thus the lubrication oil inside the oil cartridge can be used up via capillary action.

2-13-2 Feature of E2 Type

(1) Cost reduction: Save costs by reducing oil usage and maintenance.

Table 2-13-1

Item	Standard Block	E2 (Self-lubricant) Block
Lubricant device	\$XXX	-
Design and installation of lubricant device	\$XXX	-
Cost of oil purchase	0.3cc / hr x 8hrs / day x 280 days / year x 5 year = 3360 cc x cost / cc = \$ XXX	10 cc(5 years10000km) x cost/cc = \$ XX
Cost of refillin	3~5hrs/time x 3~5times/year x 5year x cost/time = \$ XXX	-
Waste oil disposal	3~5 times / year x 5year x cost / time = \$ XXX	-

- (2) Clean and environmentally friendly: Optimized oil usage prevents leaking, making it the ideal solution for clean working environments.
- (3) Long lasting and low maintenance: Self-lubricating block is maintenance free in most applications.
- (4) No installation limitations: The linear guideway can be lubricated by E2 self-lubricating module irrespective of mounting directions.
- (5) Easy to be assembled and disassembled: The cartridge can be added or removed from the block even when the guideway is installed on a machine.
- (6) Different oils can be selected: The replaceable oil cartridge can be refilled with any approved lubrication oil depending on different requirements.
- (7) Applications for special environments: Sealing grease into the block leads to better lubrication effects, especially in dusty, dirty, or wet environments.

2-13-3 Applications

- (1) Automation machinery
- (2) Manufacturing Machines: Injection molding machines, printing, paper making, textile machines, food processing machines, wood working machines, and so on.
- (3) Electronic Machinery: Semiconductor equipment, robotics, X-Y table, measuring and inspecting equipment.
- (4) Others: Medical equipment, transporting equipment, construction equipment.

2-13-4 Specification

(1) Add "/ E2" after the specification of linear guideway Ex. HGW25CC2R1600ZAPII + ZZ / E2

2-13-5 Lubrication Capability

(1) Life testing with light load

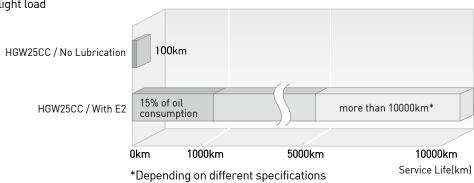


Table 2-13-2 Test condition

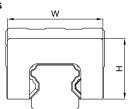
Model No.	HGW25CC
Speed	60m / min
Stroke	1500mm
Load	500kgf

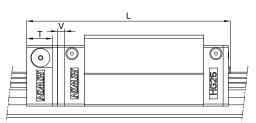
(2) Characteristic of lubricating oil

The standard oil is a fully synthetic lubricant with a main constituent, synthetic hydrocarbons (PAO). The viscosity class of the oil is 680 (ISO VG680). Its characteristics are as follows.

- Compatible with lubrication grease of which the base oil is synthetic hydrocarbon oil, mineral oil or ester oil.
- Synthetic oil with superb high temperature thermal/oxidation resistance.
- High viscosity index to provide outstanding performance in service applications at extremely high and low temperatures.
- Low traction coefficient to reduce power consumption.
- Anti-corrosion and rust-proof.
- * Lubricants with the same viscosity class can also be used; however, their compatibility should be taken into consideration.

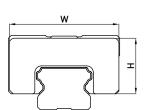
2-13-6 Temperature Range for Application

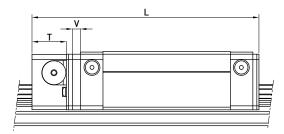

Not for high heat environments exceeding 50°C and lower than -10°C. Please contact with HIWIN for further discussion and information if the temperature is out of this range.


E2 Type

Self Lubrication Kit

2-13-7 Dimension Table for E2 Type

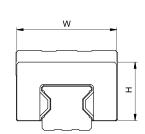


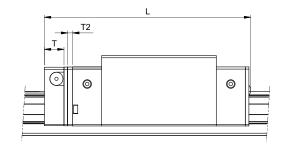


	E2 self-lubricating module dimensions							
Model No.	W	Н	т	٧	L			
	VV	П	1	V	SS	ZZ	DD	KK
HG15C	32.4	19.5	12.5	3.0	75.4 (75.6)	82.5 (82.7)	82.0 (82.2)	89.1 (89.3)
HG20C	43.0	24.4	13.5	3.5	93.5 (94.4)	97.5 (98.5)	98.5 (99.4)	102.5 (103.5)
HG20H	43.0	24.4	13.3	3.5	108.2 (109.1)	112.2 (113.2)	113.2 (114.1)	117.2 (118.2)
HG25C	,,,,	00.5	10 F	٥.	100.0 (100.5)	104.0 (105.0)	105.0 (105.5)	109.0 (110.0)
HG25H	46.4	29.5	13.5	5 3.5	120.6 (121.1)	124.6 (125.6)	125.6 (126.1)	129.6 (130.6)
HG30C	F0.0	25.0	10 5	3.5	112.9 (113.9)	120.4 (121.4)	120.3 (121.3)	127.8 (128.8)
HG30H	58.0	35.0	13.5	3.5	135.9 (136.9)	143.4 (144.4)	143.3 (144.3)	150.8 (151.8)
HG35C	68.0	38.5	13.5	3.5	127.9 (128.9)	135.4 (136.4)	135.3 (136.3)	142.8 (143.8)
HG35H	00.0	36.3	13.3	3.5	153.7 (154.7)	161.2 (162.2)	161.1 (162.1)	168.6 (169.6)
HG45C	82.0	49.0	16.0	4.5	157.2 (157.2)	166.5 (166.5)	167.2 (167.2)	176.5 (176.5)
HG45H	82.0	47.0	10.0	4.5	189.0 (189.0)	198.3 (198.3)	199.0 (199.0)	208.3 (208.3)
HG55C	97.0	55.5	16.0	/ E	183.9 (183.9)	193.6 (193.6)	194.3 (194.3)	204.0 (204.0)
HG55H	97.0	33.3	10.0	3.0 4.5	222.0 (222.0)	231.7 (231.7)	232.4 (232.4)	242.1 (242.1)
HG65C	121.0	/0.0	1/ 0	4.5	219.2 (219.2)	224.7 (224.7)	228.2 (228.2)	233.7 (233.7)
HG65H	121.0	121.0 69.0 16.0	10.0	4.5	278.6 (278.6)	284.1 (284.1)	287.6 (287.6)	293.1 (293.1)

Note : The marking of "($\,$)" denotes the maximum block length with screws, lips of end seals, etc.

(2) EG Series

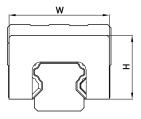


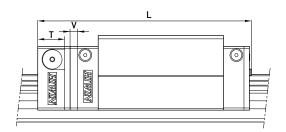


	E2 self-lubricating module dimensions								
Model No.	W	н	Т	٧	L				
	VV	П	'		SS	ZZ	DD	KK	
EG15S	33.3	18.7	11 5	3.0	54.6 (55.8)	56.2 (58.4)	58.6 (59.8)	60.2 (62.4)	
EG15C	33.3	10.7	11.5	3.0	71.3 (72.5)	72.9 (75.1)	75.3 (76.5)	76.9 (79.1)	
EG20S	41.3	20.9	13.0	3.0	66.0 (68.0)	67.6 (70.6)	70.0 (72.0)	71.6 (74.6)	
EG20C	41.3	20.9			85.1 (87.1)	86.7 (89.7)	89.1 (91.1)	90.7 (93.7)	
EG25S	47.3	.3 24.9	13.0	3.0	75.1 (77.1)	77.1 (80.1)	79.1 (81.1)	81.1 (84.1)	
EG25C	47.3	24.7	13.0		98.6 (100.6)	100.6 (103.6)	102.6 (104.6)	104.6 (107.6)	
EG30S	59.3	31.0	13.0	3.0	85.5 (87.5)	87.5 (90.5)	89.5 (91.5)	91.5 (94.5)	
EG30C	37.3	31.0	13.0	3.0	114.1 (116.1)	116.1 (119.1)	118.1 (120.1)	120.1 (123.1)	
EG35S	68.0	33.5	13.0	3.0	91.0 (93.0)	94.0 (97.0)	95.0 (97.0)	98.0 (101.0)	
EG35C	00.0	33.3	13.0	3.0	124.0 (126.0)	127.0 (130.0)	128.0 (130.0)	131.0 (134.0)	

Note : The marking of "($\,\,$)" denotes the maximum block length with screws, lips of end seals, etc.

(3) RG Series

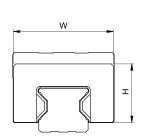


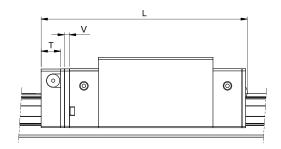


	E2 self-	lubricating	g module	dimensior	ıs			
Model No.	W	н	Т	٧	L			
	VV	11	•	•	SS	ZZ	DD	KK
RG15C	33.0	19.2	12.5	3.5	84.0 (85.2)	86.0 (88.2)	88.4 (89.6)	90.4 (92.6)
RG20C	43.4	24.2	12.5	3.5	102 (103.2)	104.0 (106.2)	106.4 (107.6)	108.4 (110.6)
RG20H	43.4	24.2	12.5	3.0	122 (123.2)	124.0 (126.2)	126.4 (127.6)	128.4 (130.6)
RG25C	46.8	29.2	13.5	3.5	114.9 (116.7)	116.9 (119.9)	119.3 (121.1)	121.3 (124.3)
RG25H	40.0	27.2	13.3	3.0	131.4 (133.2)	133.4 (136.4)	135.8 (137.6)	137.8 (140.8)
RG30C	58.8	34.9	13.5	3.5	126.8 (128.6)	129.8 (132.8)	131.6 (133.4)	134.6 (137.6)
RG30H	30.0	34.7	13.3		148.8 (150.6)	151.8 (154.8)	153.6 (155.4)	156.6 (159.6)
RG35C	68.8	40.3	13.5	3.5	141 (143.7)	144.0 (148.0)	146.0 (148.7)	149.0 (153.0)
RG35H	00.0	40.3	13.3	3.3	168.5 (171.2)	171.5 (175.5)	173.5 (176.2)	176.5 (180.5)
RG45C	83.8	50.2	16.0	4.5	173.7 (175.3)	176.7 (180.7)	180.9 (182.5)	183.9 (187.9)
RG45H	03.0	30.2	10.0	4.5	207.5 (209.1)	210.5 (214.5)	214.7 (216.3)	217.7 (221.7)
RG55C	97.6	58.4	14 0	<i>(</i> , 5,	204.2 (205.8)	207.2 (211.2)	211.4 (213)	214.4 (218.4)
RG55H	77.0	30.4	10.0	16.0 4.5	252.5 (254.1)	255.5 (259.5)	259.7 (261.3)	262.7 (266.7)
RG65C	121.7	76.1	16.0	/ E	252.5 (254.5)	255.5 (260.5)	261.3 (263.3)	264.3 (269.3)
RG65H	121.7	70.1	10.0	4.5	315.5 (317.5)	318.5 (323.5)	324.3 (326.3)	327.3 (332.3)

Note: The marking of "()" denotes the maximum block length with screws, lips of end seals, etc.

(4) QH Series

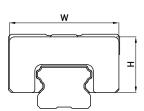

	E2 self-lubricating module dimensions								
Model No.	W	Н	т	٧	L				
	**	"	'	*	SS	ZZ	DD	KK	
QH15C	32.4	19.5	12.5	3.0	75.4 (75.6)	82.2 (82.7)	82.0 (82.2)	88.8 (89.3)	
QH20C	43.0	24.4	13.5	3.5	93.1 (94.2)	97.2 (98.5)	98.1 (99.2)	102.2 (103.5)	
QH20H	43.0	24.4	13.3	3.0	107.8 (108.9)	111.9 (113.2)	112.8 (113.9)	116.9 (118.2)	
QH25C	///	00.5	10.5	3.5	100.2 (101.5)	104.7 (106.0)	105.2 (106.5)	109.7 (111.0)	
QH25H	46.4	29.5	13.5		120.8 (122.1)	125.3 (126.6)	125.8 (127.1)	130.3 (131.6)	
QH30C	58.0	35.0	10.5	٥٦	112.9 (113.9)	120.1 (121.4)	120.3 (121.3)	127.5 (128.8)	
QH30H	36.0	35.0	13.5	3.5	135.9 (136.9)	143.1 (144.4)	143.3 (144.3)	150.5 (151.8)	
QH35C	68.0	38.5	16.0	3.5	129.3 (129.7)	133.5 (134.0)	134.3 (134.7)	138.5 (139.0)	
QH35H	00.0	30.3	10.0	3.0	155.1 (155.5)	159.3 (159.8)	160.1 (160.5)	164.3 (164.8)	
QH45C	82.0	/0.0	16.0	/ E	158.3 (158.3)	163.7 (163.7)	165.5 (165.5)	170.9 (170.9)	
QH45H	0Z.U	49.0		4.5	190.1 (190.1)	195.5 (195.5)	197.3 (197.3)	202.7 (202.7)	

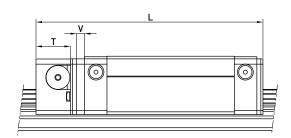

Note: The marking of "()" denotes the maximum block length with screws, lips of end seals, etc.

E2 Type

Self Lubrication Kit

(5) QR Series





	E2 self-	E2 self-lubricating module dimensions								
Model No.	W	н	Т	V	L					
	**	"			SS	ZZ	DD	KK		
QR 20C	43.4	24.2	12.5	3.5	102.0 (103.2)	104.0 (106.2)	106.4 (107.4)	108.4 (110.6)		
QR 25C	46.8	29.2	13.5	.5 3.5	114.9 (116.7)	116.9 (119.9)	119.3 (121.1)	121.3 (124.3)		
QR 25H	40.0	27.2	13.5		129.9 (131.7)	131.9 (134.9)	134.3 (136.1)	136.3 (139.3)		
QR 30C	58.8	34.9	13.5	3.5	126.8 (128.6)	129.8 (132.8)	131.6 (133.4)	134.6 (137.6)		
QR 30H	30.0	34.7	13.3		148.8 (150.6)	151.5 (154.8)	153.6 (155.4)	156.6 (159.6)		
QR 35C	/ O O	/O.O.	10 5	٥٦	141.0 (143.7)	144.0 (148.0)	146.0 (148.7)	149.0 (153.0)		
QR 35H	68.8	40.3	13.5	3.5	168.5 (171.2)	171.5 (175.5)	173.5 (176.2)	176.5 (180.5)		
QR 45C	00.0	F0.0	1/ 0	, -	173.7 (175.3)	176.7 (180.7)	180.9 (182.5)	183.9 (187.9)		
QR 45H	83.8	50.2	16.0	4.5	207.5 (209.1)	210.5 (214.5)	214.7 (216.3)	217.7 (221.7)		

Note : The marking of "($\,$)" denotes the maximum block length with screws, lips of end seals, etc.

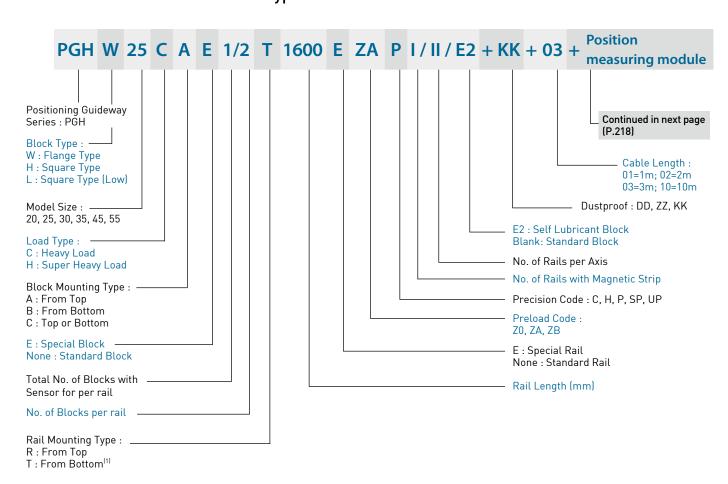
(6) QE Series

	E2 self-lubricating module dimensions									
Model No.	W	н	т	٧	L	L				
	**	"	'	·	SS	ZZ	DD	KK		
QE15S	33.3	19.2	11.5	3.0	54.6 (56.0)	56.6 (58.8)	58.6 (60.0)	60.6 (62.8)		
QE15C	33.3	17.2	11.5	3.0	71.3 (72.7)	73.3 (75.5)	75.3 (76.7)	77.3 (79.5)		
QE20S	41.3	20.9	13.0	3.0	66.0 (68.0)	68.0 (71.0)	70.0 (72.0)	72.0 (75.0)		
QE20C	41.3	20.7	13.0		85.1 (87.1)	87.1 (90.1)	89.1 (91.1)	91.1 (94.1)		
QE25S	47.3	24.9	13.0	3.0	76.1 (77.8)	78.1 (81.1)	81.1 (82.8)	83.1 (86.1)		
QE25C	47.3	24.7	13.0	3.0	99.6 (101.3)	101.6 (104.6)	104.6 (106.3)	106.6 (109.6)		
QE30S	59.3	31.0	13.0	3.0	83.5 (58.4)	85.5 (88.5)	88.5 (90.4)	90.5 (93.5)		
QE30C	37.3	31.0	13.0	3.0	112.1 (114.0)	114.1 (117.1)	117.1 (119.0)	119.1 (122.1)		
QE35S	68.0	35.5	13.0	3.0	92.0 (94.0)	95.0 (98.0)	96.0 (98.0)	99.0 (102.0)		
QE35C	00.0	33.3	13.0	3.0	124.0 (126.0)	127.0 (130.0)	128.0 (130.0)	131.0 (134.0)		

Note : The marking of "($\,$)" denotes the maximum block length with screws, lips of end seals, etc.

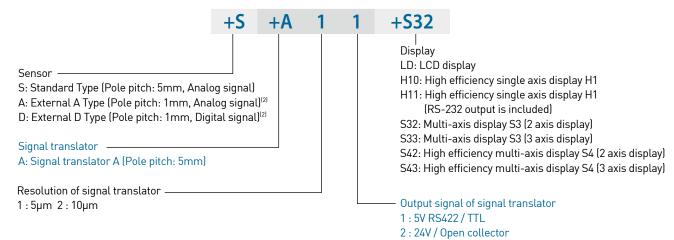
2-14 PG Type - Positioning Guideway

(1) Construction


The PG is a linear guideway assembly integrated with a magnetic encoder for position measurement.

(2) Features

- 1. Magnetic encoder is built into the rail, saving installation space.
- 2. Maintains high rigidity as well as high accuracy.
- 3. Both the sensor and the magnetic strip are protected from harmful external contaminants such as dust, iron chips, etc.
- 4. Non-contact measuring sensor for longer life.
- 5. Can measure distances up to 30 m.
- 6. Can withstand humidity and high-temperature environments, along with oily, dusty and high vibration applications.
- 7. High resolution
- 8. Easy installation



2-14-1 Model Number of PG Type

Positioning Guideway

Position measuring module (Continued from last page, P.217)

Note: (1) If rail mounting configuration is from bottom, magnetic strip will be affixed on the rail. (2) External type sensors (A and D) are only available for size 20 and 25.

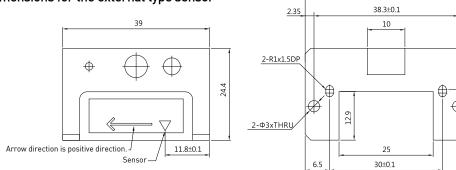
Table 2-14-1 The help of selecting the components for the position measuring module.

Sensor	Signal translator	Resolution of signal translator	Output signal of signal translator	Display		
				S32: Multi-axis display S3 (2 axis display)		
	A: Signal translator A	1:5µm	1:5V RS422/TTL 2:24V/Open collector	S33: Multi-axis display S3 (3 axis display)		
C Chandand Tuna	(Pole pitch: 5mm)	2:10µm		S42: High efficiency multi-axis display S4 (2 axis display)		
S: Standard Type (Pole pitch: 5mm,				S43: High efficiency multi-axis display S4 (3 axis display)		
Analog signal)				LD: LCD display		
	Does not need a s	signal translator		H10: High efficiency single axis display H1		
				H11: High efficiency single axis display H1 (RS-232 output is included)		
A: External A Type (Pole pitch: 1mm, Analog signal)	Does not need a s	signal translator		H10: High efficiency single axis display H1		
(Only available for size 20 and 25)	2000 1101 11000 0	ng nat ti anotato.		H11: High efficiency single axis display H1 (RS-232 output is included)		
				H10: High efficiency single axis display H1		
D: External D Type				H11: High efficiency single axis display H1 (RS-232 output is included)		
(Pole pitch: 1mm, Digital signal)	Does not need a s	signal translator		S32: Multi-axis display S3 (2 axis display		
(Only available for size 20 and 25)				S33: Multi-axis display S3 (3 axis display)		
				S42: High efficiency multi-axis display S4 [2 axis display]		
				S43: High efficiency multi-axis display S4 (3 axis display)		

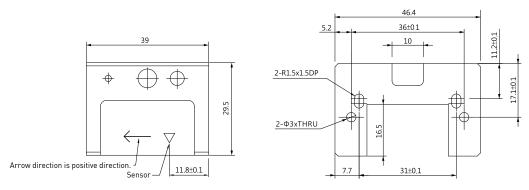
2-14-2 Technical data for PG Type

(1) Sensor technical data

Table 2-14-2 Technical data for the sensor


Type Specification			
	Standard		ernal
		A type (analog signal)	D type (digital signal)
Resolution	5mm	1mm	1mm
Repeatability	±10 μm ⁽¹⁾	±3 µm ⁽²⁾	±2 µm ⁽²⁾
Reference signal	-	1mm/pulse	1mm/pulse
Max. speed	10m/sec	10m/sec	5m/sec
Output signal	SIN/COS 50mVp-p	SIN/COS 1Vp-p	5V RS422/TTL
Max. output frequency	2KHz	10KHz	1.25MHz
Input power	3.3VDC±5%	5VDC±5%	5VDC±5%
Input current	0.1A	0.1A	0.1A
Operating temperature	0°C~50°C	0°C~50°C	0°C~50°C
Storage temperature	-5°C~70°C	-5°C~70°C	-5°C~70°C
IP class	IP67	IP67	IP67

43

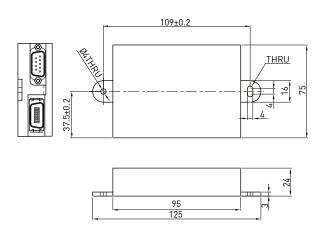

Note: (1) Repeatability is measured at a gap of 1mm.

(2) Repeatability is measured at a gap of 0.1mm.

O Dimensions for the external type sensor

Note: These dimensions are suitable for HIWIN PG20 linear guideway.

Note:These dimensions are suitable for HIWIN PG25 linear guideway.


Positioning Guideway

(2) Signal translator technical data

Table 2-14-3 Technical data for the signal translator

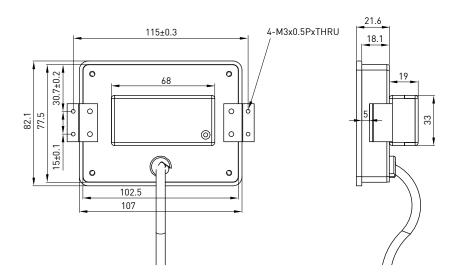
		_						
o	Ti Dia							
Signal tran	nslator A							
5V RS422 /	TTL	24V/Open c	ollector					
5 μm	10 µm	5 µm	10 µm					
±10 μm	±20 μm	±10 µm	±20 μm					
64KHz	32KHz	64KHz	32KHz					
±[80 μm+15	ρ̄μm/m×L],	L: Scale Leng	th (m)					
1.5m/sec								
SIN/COS 50)mVp-p							
5VDC±5% /	24VDC±10%							
0.5A								
erature 0°C ~ 50°C								
-5°C~70°C								
	5V RS422 / 5 μm ±10 μm 64KHz ±[80 μm+15 1.5m/sec SIN/COS 50 5VDC±5% / 0.5A 0°C~50°C	±10 μm ±20 μm 64KHz 32KHz ±[80 μm+15 μm/m×L], 1.5m/sec SIN/COS 50mVp-p 5VDC±5% / 24VDC±10% 0.5A	5V RS422 / TTL 24V/Open complete 5 μm 10 μm 5 μm ±10 μm ±10 μm 64KHz 32KHz 64KHz ±[80 μm+15 μm/m×L] , L: Scale Leng 1.5m/sec SIN/COS 50mVp-p 5VDC±5% / 24VDC±10% 0.5A 0°C ~ 50°C					

O Dimensions of signal translator A

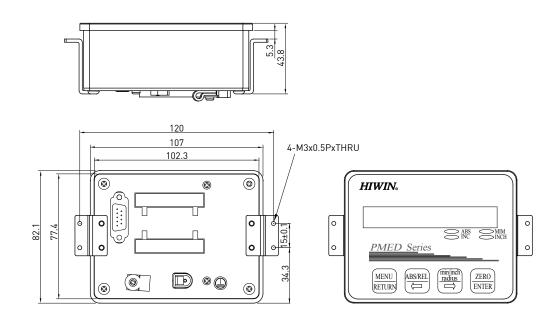
(3) Display technical data

Table 2-14-4 Technical data for the single axis diplay

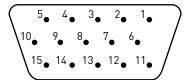
Type Specification	HIWIN. 255 (23475)	HIWIN. 26.555 PHENSION
	LCD display, LD	High efficiency single axis display, H1
Display	8 digital LCD display with +/- sign	8 digital LED display
Resolution	5μm	1µm,2µm,5µm,10µm
Accuracy	±[80µm+15µm/m×L] L: Scale Length (m)	-
Repeatability	±10µm	-
Max. speed	3m/sec	-
Max. acceleration	2G	2G
Input signal	Analog:SIN/COS 50mVp-p	Analog:SIN/COS 1Vp-p Digital:5V RS422/TTL
Input frequency	0.6KHz	Analog:2KHz Digital:0.5MHz
Input power	Two commercial AA No.3 batteries	5VDC±5%
Input current	-	1A
Relay contact rating	-	DC24V/2A
Battery life	1 year by setting it at 1.5m/s	-
Operating temperature	0°C~50°C	0°C~50°C
Storage temperature	-5°C~70°C	-5°C~ 70°C
IP class	IP43	IP43


Table 2-14-5 Technical data for the multi-axis display

Type Specification		• 100 100 100 100 100 100 100 100 100 10
	Multi-axis display, S3	High efficiency multi-axis display, S4
Display	8 digital LED display	8 digital LED display
Resolution	0.1µm, 0.2µm, 0.5µm, 1µm, 2µm, 5µm, 10µm, 20µm, 50µm	0.1µm, 0.2µm, 0.5µm, 1µm, 2µm, 5µm, 10µm, 20µm, 50µm
Input signal	5V/TTL	5V/TTL
Max. output frequency	<1.5MHz	<2MHz
Input power	DC 8V~30V	AC 90V~240V
Input current	0.08A	-
Operating temperature	0°C~50°C	0°C~50°C
Storage temperature	-5°C~70°C	-5°C~70°C
IP class	IP43	IP43

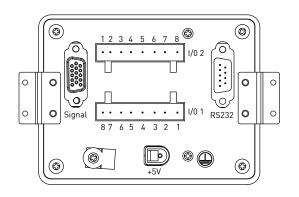

Note: An additional signal transfer cable is needed when one of the displays (S3, S4) is selected. The type of cable will be selected by HIWIN depending on the type of display.

Positioning Guideway

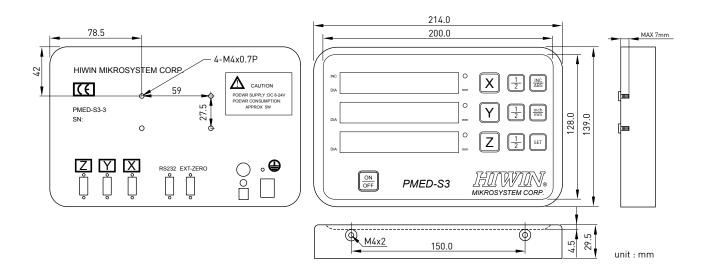

Dimensions of LCD display, LD

O Dimensions of high efficiency single axis display, H1

O Pin assignment of high efficiency single axis display, H1



Pin definition for signal input connector

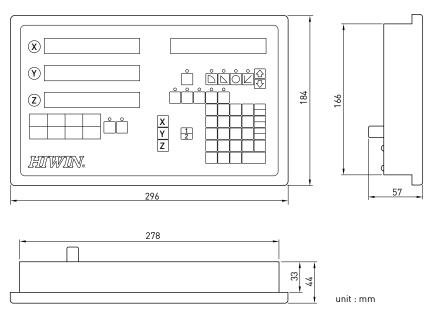

Pin	Designation	Pin	Designation	Pin	Designation
1	+5V	6	FG	11	A+(Analog)
2	GND	7	Z+	12	A-(Analog)
3	A+(Digital)	8	Z-	13	B+(Analog)
4	B+(Digital)	9	A-(Digital)	14	B-(Analog)
5	NC	10	B-(Digital)	15	NC

Pin definition for signal output connector

1/0	0 1	I/C	2
Pin	Designation	Pin	Designation
1	NC	1	NC
2	NC	2	NC
3	NC	3	NC
4	NC	4	NC
5		5	Dolay 2(CH 2)
6	Relay 0(CH-0)	6	Relay 2(CH-2)
7	Dalay 1(CLL 1)	7	Dalay 2(CH 2)
8	Relay 1(CH-1)	8	Relay 3(CH-3)

O Dimensions of multi-axis display, S3

Positioning Guideway


Pin assignment of multi-axis display, S3

15 pin D-Sub signal NC : No connection [female] FG : Frame ground

\subset	1.	2.	3.	4.	5.	\supset
١6	• 7	• 8	• 9	• 10	•	/
\	11.	12.	13.	14.	15.	/

Pin	Designation	Pin	Designation	Pin	Designation
1	+5V	6	FG	11	NC
2	GND	7	NC	12	NC
3	A+	8	NC	13	NC
4	B+	9	NC	14	NC
5	ABS-	10	NC	15	NC

O Dimensions of high efficiency multi-axis display, S4

Pin assignment of high efficiency multi-axis display, S4

15 pin D-Sub signal NC : No connection [female] FG : Frame ground

_	1.	2.	3.	4.	5.	\neg
۱	• 7	. 8	• 9	• 10	•	
\	11.	12.	13.	14	15.	

Pin	Designation	Pin	Designation	Pin	Designation
1	+5V	6	FG	11	NC
2	GND	7	NC	12	NC
3	A+	8	NC	13	NC
4	B+	9	NC	14	NC
5	ABS-	10	NC	15	NC

2-14-3 Accuracy Classes

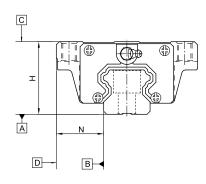


Table 2-14-6 Accuracy Standards of PGH 25, 30, 35

Unit: mm

Accuracy classes	Normal (C)	High	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.02	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A			See table 2-13-7		
Running parallelism of block surface D to surface B			See table 2-13-7		

Note: See table 2-1-3 and 2-1-5 in section 2-1(HG series) for the accuracy standards of PGH 20, 45, 55

Table 2-14-7 Accuracy of Running Parallelism

•	_				
Rail length (mm)	Accuracy (µm)				
raic tellgal (illii)	С	Н	Р	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7

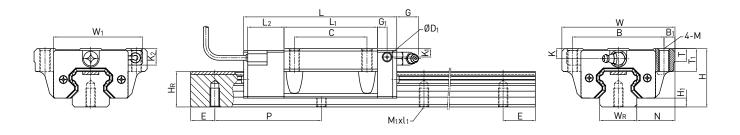
2-14-4 Preload

Table 2-14-8 PGH-series


Class	Code	Preload
Light Preload	Z0	0~0.02C
Medium Preload	ZA	0.05C~0.07C
Heavy Preload	ZB	0.10C~0.12C

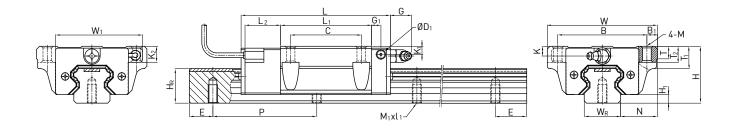
Note: "C" in preload column means basic dynamic load rating

Positioning Guideway

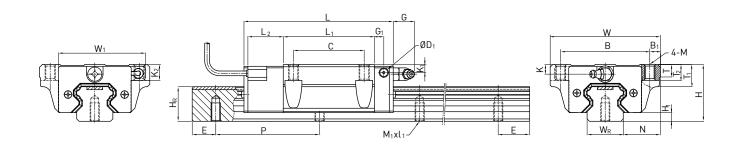

2-14-5 Dimensions for PG Series

(1) PGHH-CA / PGHH-HA

	Dim	nensi	ons																						Basic	Basic	Wei	ght
Model No.		ssen (mm)							Di	mensi	ons o	f Blo	ck (n	nm)						Dim	ensi	ons of R	ail (r	nm)	Dynamic Load Rating	Load	Block	Rail
	Н	H ₁	N	W	W ₁	В	B ₁	С	L	L ₁	L ₂	G	G ₁	D ₁	K	K ₁	K ₂	Mxl	Т	W _R	H _R	M_1xl_1	Р	Ε	C(kN)	C ₀ (kN)	kg	kg/m
PGHH20CA	20	, ,	10	,,	52	22	,	36	90.5	50.5	٥٢	12	,	_	,	,	10	M5x6	0	20	17.5	M6x10	/0	20	27.1	36.68	0.38	2.05
PGHH20HA	30	4.0	12	44	52	32	6	50	105.2	65.2	25	12	6	Э	6	6	10	OXCIM	8	20	17.5	MOXIU	60	20	32.7	47.96	0.39	2.05
PGHH25CA	40	5.5	12 E	/.0	55.4	25	4 5	35	95	58	22.5	12		5	10	0	1.4	M6x8	0	22	22	M6x12	40	20	34.9	52.82	0.51	3.05
PGHH25HA	40	5.5	12.5	40	33.4	33	0.5	50	116	78.6		12	0	J	10	7	14	MOXO	0	23	22	MOXIZ	00	20	42.2	69.07	0.69	3.03
PGHH30CA	45	4	14	40	67	40	10	40	110	70	23	12	4	5	9.5	12 Q	10	M8x10	25	28	26	M8v15	ΩN	20	48.5	71.87	0.88	4.31
PGHH30HA	43	U	10	00	07	40	10	60	133	93	23	12	Ü	J	7.5	13.0	17	MOXIO	0.5	20	20	MOXIO	00	20	58.6	93.99	1.16	4.51
PGHH35CA	55	75	10	70	77	50	10	50	123	80	23 /	12	7	5	14	10 4	22.5	M8x12	10.2	3/	20	M8v17	gη	20	64.6	93.88	1.45	6.14
PGHH35HA	33	7.5	10	70	,,	50	10	72	148.8	105.8	25.4	12	,	J	10	17.0	25.5	MOXIZ	10.2	54	27	MOXIT	00	20	77.9	122.77	1.92	0.14
PGHH45CA	70	9.5	20.5	84	91	40	12		148		24.5	12 0	10	Ω 5	10 5	20 F	3N 5	M10x17	14	45	38	M12v2/	105	22.5	103.8	146.71	2.73	10.25
PGHH45HA	70	7.5	20.5	00	/ 1	00	13		179.8		24.3	12.7	10	0.5	10.5	50.5	50.5	MITUXI7	10	40	50	IVI 1 Z X Z 4	100	ZZ.J	125.3	191.85	3.61	10.23
PGHH55CA	ยก	13	23 5	100	106	75	12 5		172.7	117.7	26	12 9	11	85	22	29	28 5	M12x18	175	53	/. /.	M1/v25	120	วก	153.2	211.23	4.17	14.92
PGHH55HA	30	13	20.0	100	100	, 5	12.5		210.8	155.8	20	12.7	''	0.5	22	21	20.5	14112 110	17.5	55	44	14114823	120	50	184.9	276.23	5.49	14.72

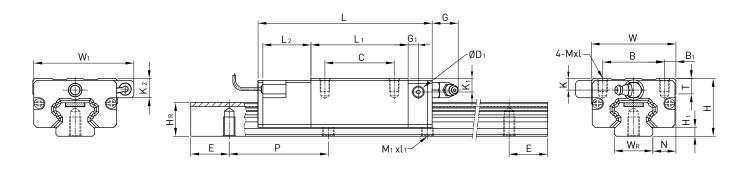

(2) PGHW-CA / PGHW-HA

	Dim	nensi	ons																							Basic Dynamic			
		ssen (mm)							Din	nensio	ns of	Bloc	k (n	nm)							Dim	ensi	ons of R	ail (r	mm)	Load Rating	Load	Block	
	Н	H ₁	N	W	W ₁	В	B ₁	С	L	L ₁	L ₂	G	G ₁	D ₁	М	K	K ₁	K ₂	Т	T ₁	\mathbf{W}_{R}	H_R	M_1xl_1	Р	E	C(kN)	C ₀ (kN)	kg	kg/m
PGHW20CA		, ,	04.5		F0	F0	_	/0	90.5		٥٦	10	,	_	14/	,	,	10	•	10	00	40.5	14/ 10	40	00	27.1	36.68	0.40	0.05
PGHW20HA		4.6	21.5	63	52	53	5	40	105.2		25	12	6	5	M6	6	6	10	8	10	20	17.5	M6x10	60	20	32.7	47.96	0.52	2.05
PGHW25CA		5.5	22 E	70	55 <i>(</i>	57	4 5		95	58	22.5	12	L	Б	MO		Б	10	0	1.6	22	22	M6x12	40	20	34.9	52.82	0.59	3.05
PGHW25HA		5.5	23.3	70	33.4	37	0.5	43		78.6	22.3	12	0	J	IMO	O	J	10	0	14	23	22	MOXIZ	00	20	42.2	69.07	0.80	3.03
PGHW30CA		4	21	on.	67	72	o	52		70	23	12	4	5	M10	4.5	10 Q	14	Q 5	14	28	26	M8x15	ΩN	20	48.5	71.87	1.09	4.31
PGHW30HA		O	31	70	07	12	,	JZ	133	93	25	12	Ü	J	MIIO	0.5	10.0	10	0.5	10	20	20	MOXIO	00	20	58.6	93.99	1.44	4.51
PGHW35CA	/, Q	75	33	100	77	82	Q	62	123	80	23 /	12	7	5	M10	0	12 4	14 5	10 1	10	3/	29	M8x17	ΩN	20	64.6	93.88	1.56	6.14
PGHW35HA		7.5	33	100	,,	02	,		148.8		25.4	12	,	J	MITO	,	12.0	10.5	10.1	10	54	21	MOXIT	00	20	77.9	122.77	2.06	0.14
PGHW45CA		95	375	120	91	100	10		148		24.5	12 0	10	25	M12	25	20	20	15 1	22	45	38	M12x24	105	22.5	103.8	146.71	2.79	10.25
PGHW45HA		7.3	37.3	120	71	100	10		179.8		24.0	12.7	10	0.0	IVIIZ	0.0	20	20	13.1	22	45	30	14112824	103	22.3	125.3	191.85	3.69	10.23
PGHW55CA	70	13	/3 5	1/,0	106	116	12		172.7		26	12 9	11	85	M1/	12	19	18 5	17 5	26.5	53	44	M14x25	120	30	153.2	211.23	4.52	14.92
PGHW55HA		13	40.0	140	100	110	12		210.8		20	12.7	''	0.5	1-114	12	.,	10.5	17.5	20.5	55	44	14114723	120	50	184.9	276.23	5.96	14.72

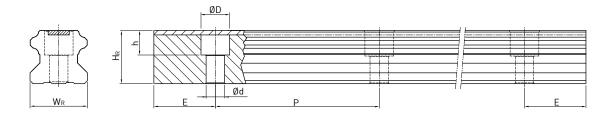

Positioning Guideway

(3) PGHW-CB/ PGHW-HB

Model No.	of A	nensi .ssen (mm)	nbly						ı	Dimens	sions	of Bl	.ock	(mn	n)							Dim	iensi	ons of R	ail (r	nm)	Basic Dynamic Load Rating	Static Load	We	
	Н	H ₁	N	W	W_1	В	B ₁	С	L	L ₁	L ₂	G	G ₁	D ₁	М	K	K ₁	K ₂	Т	T ₁	T ₂	\mathbf{W}_{R}	H_R	M_1xl_1	Р	E	C(kN)	C ₀ (kN)	kg	kg/m
PGHW20CB	20	4.6	21 5	42	52	F.2	5	4.0	90.5		25	12		5	Ø6	6	6	10	8	10	0 5	20	17 5	M6x10	40	20	27.1	36.68	0.40	2.05
PGHW20HB		4.0	21.5	03	32	55	5	40	105.2		20	12	0	5	סש	0	0	10	0	10	7.3	20	17.5	MOXIU	00	20	32.7	47.96	0.52	2.00
PGHW25CB	34	5.5	22.5	70	55 /	57	4.5	45	95	58	22.5	12	4	5	Ø7	6	5	10	8	14	10	23	22	M6x12	40	20	34.9	52.82	0.59	3.05
PGHW25HB	30	5.5	25.5	70	33.4	37	0.5	43	116		22.5	12	U	J	10	Ü	J	10	Ü	14	10	23	22	MOXIZ	00	20	42.2	69.07	0.80	3.03
PGHW30CB	42	6	31	90	67	72	q	52	110	70	23	12	6	5	МQ	45	1N 8	16	8.5	16	10	28	26	M8x15	80	20	48.5	71.87	1.09	4.31
PGHW30HB		O	51	70	07	72	,	JZ	133	93	20	12	U	J	ν,	0.5	10.0	10	0.5	10	10	20	20	1410 X 13	00	20	58.6	93.99	1.44	4.01
PGHW35CB	48	7.5	33	100	77	82	q	62	123	80	23.4	12	7	5	МQ	q	12 6	16 5	10 1	18	13	3/4	29	M8x17	80	20	64.6	93.88	1.56	6.14
PGHW35HB	40	7.5	55	100	,,	02	,		148.8		20.4	12	,	J	ν,	,	12.0	10.5	10.1	10	10	54	2,	MOXIT	00	20	77.9	122.77	2.06	0.14
PGHW45CB	60	95	375	120	91	100	10	80	148		24.5	12 9	10	8 5	Ø11	85	20	20	15 1	22	15	45	38	M12x24	105	22 5	103.8	146.71	2.79	10.25
PGHW45HB	00	7.0	57.5	123	, ,	100	10	00	179.8		24.0	,	10	5.5	<i>D</i> 11	5.5	20	20	.0.1		10		00		,00	0	125.3	191.85	3.69	.0.20
PGHW55CB	70	13	43.5	140	106	116	12		172.7		26	12 9	11	8.5	Ø14	12	19	18 5	17.5	26.5	17	53	44	M14x25	120	30	153.2	211.23	4.52	14.92
PGHW55HB	, 0	10	40.0	140	130	110	12		210.8		20	12.7		0.0	,D 14	12	.,	10.0	17.0	20.0	.,	00	74	1.11-122	120	-00	184.9	276.23	5.96	14.72


(4) PGHW-CC/ PGHW-HC

	Dim	nensi	ons																								Basic Dynamic		We	ight
Model No.		ssen (mm								Dimen	sions	of B	lock	(mn	n)							Dim	ensi	ons of R	ail (r	mm)		Load	Block	Rail
	Н	H ₁	N	W	W ₁	В	B ₁	С	L	L ₁	L ₂	G	G ₁	D ₁	М	K	K ₁	K ₂	Т	T ₁	T ₂	W _R	H _R	M_1xl_1	Р	E	C(kN)	C ₀ (kN)	kg	kg/m
PGHW20CC		4.6	21 E	/2	EO	Ea	5	/0	90.5		25	10	,	_	M	,	,	10	0	10	0 E	20	17 E	M6x10	/ 0	20	27.1	36.68	0.40	2.05
PGHW20HC		4.0	21.3	03	32	55	ວ	40	105.2		20	12	0	5	IVIO	0	0	10	0	10	7.0	20	17.5	MOXIU	00	20	32.7	47.96	0.52	2.05
PGHW25CC		5.5	22 E	70	55 <i>(</i>	57	4 5	/ E	95		22.5	12	4	5	MO	6	5	10	0	1.6	10	22	22	M6x12	40	20	34.9	52.82	0.59	3.05
PGHW25HC		5.5	23.3	70	33.4	37	0.5	45	116		22.5	12	Ü	J	IVIO	Ü	J	10	Ü	14	10	23	22	MOXIZ	00	20	42.2	69.07	0.80	3.03
PGHW30CC		6	31	90	67	72	9	52	110	70	23	12	6	5	M10	4.5	1N 8	16	85	16	10	28	26	M8x15	80	20	48.5	71.87	1.09	4.31
PGHW30HC		Ü	51	70	07	12	,	52	133	93	25	12	U	J	14110	0.5	10.0	10	0.5	10	10	20	20	1410713	00	20	58.6	93.99	1.44	4.51
PGHW35CC		75	33	100	77	82	q	62	123		23 /	12	7	5	M10	q	12 6	16 5	10 1	18	13	3/	29	M8x17	80	20	64.6	93.88	1.56	6.14
PGHW35HC		7.5	33	100	,,	02	,	02	148.8		25.4	12	,	J	14110	,	12.0	10.5	10.1	10	13	54	21	IVIOX I /	00	20	77.9	122.77	2.06	0.14
PGHW45CC		95	375	120	91	100	10	RΠ	148		24.5	12 9	10	85	M12	85	20	20	15 1	22	15	45	38	M12v2/	105	22.5	103.8	146.71	2.79	10.25
PGHW45HC		7.3	37.3	120	71	100	10	00	179.8		24.5	12.7	10	0.0	14117	0.0	20	20	13.1	22	10	45	30	14112724	103	22.3	125.3	191.85	3.69	10.23
PGHW55CC		13	/3 5	1/.0	104	116	12		172.7		26	12 9	11	85	M1/	12	19	18 5	175	26.5	17	53	1.1.	M14x25	120	30	153.2	211.23	4.52	14.92
PGHW55HC		13	40.0	140	100	110	12	,5	210.8		20	12.7	-11	0.5	1-114	12	17	10.5	17.5	20.5	17	55	44	1414423	120	50	184.9	276.23	5.96	14.72


Positioning Guideway

(5) PGHL-CA / PGHL-HA

	Dimensions										Basic Basic Dynamic Static	Wei	ight															
Model No.	of Assembly Dimensions of Block (mm) (mm)						Dimensions of Rail (mm)				nm)	Load		Block	Rail													
	Н	H ₁	N	W	W ₁	В	B ₁	С	L	L ₁	L ₂	G	G ₁	D ₁	K	K ₁	K ₂	Mxl	Т	\mathbf{W}_{R}	H _R	M ₁ xl ₁	Р	Е	C(kN)	C ₀ (kN)	kg	kg/m
PGHL25CA		5.5	12 E	<i>(</i> .0	55.4	25	4.5		95	58	22.5	12		Б		9	1./.	M6x6	8	22	22	M6x12	40	20	34.9	52.82		3.05
PGHL25HA		5.5	12.3	40	33.4	33	6.0		116		22.3	12	0	5	0	7	14	MOXO	0	23	22	MOXIZ	00	20	42.2	69.07		
PGHL30CA			14	40	47	۸n		40	110	70	22	12		5	4 5	10 0	14	M0v10	0 5	20	24	M8x15	on	20	48.5	71.87		4.31
PGHL30HA		0	10	00	07	40	10	60	133	93	23	12	0	J	0.5	10.0	10	MOXIU	0.5	20	20	MOXID	00	20	58.6	93.99		
PGHL35CA		75	10	70	77	50	10	50	123		23 /	12	7	5	0	12.4	14 5	M8v12	10.2	3/	20	M8x17	ΩN	20	64.6	93.88	1.45	6.14
PGHL35HA		7.5	10	70	,,	30	10	72	148.8		25.4	12	,	J	,	12.0	10.5	MOXIZ	10.2	54	21	MOXIT	00	20	77.9	122.77	1.92	
PGHL45CA		0.5	20 5	9.4	91	40			148			12 0	10	25	Ω 5	20.5	20.5	M10×17	14	45	38	M12×24	105	22.5	103.8	146.71		10.25
PGHL45HA		7.5	20.5	00	/1	00	13		179.8			12.7	10	0.5	0.5	20.5	20.5 M10x1	MIIUXI/	16	45	J 30	IVI 12X24	105	22.3	125.3	191.85		10.23
PGHL55CA		12	23 E	100	104	75			172.7		26	12.0	11	25	12	10	10 5	M12v10	17 5	53	4.4	M14x25	120	30	153.2	211.23		14.92
PGHL55HA	70	13	23.3	100	100	75			210.8		20	12.7	- 11	0.5	12	17	10.3	I*I I ∠ X I O	17.3	33	44	CZXALIM	120	30	184.9	276.23		14.72

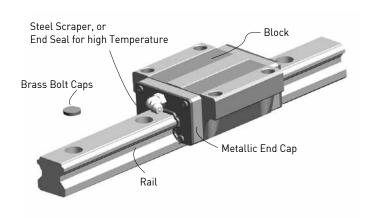
(6) Dimensions for PGHR-R (Rail Mounting from Top)

Model No.	Dimension	s of Rail (mr		Mounting Bolt for Rail	Weight				
,	WR	HR	D	h	d	P	Е	(mm)	(kg/m)
PGH20R	20	17.5	9.5	8.5	6	60	20	M5×16	2.05
PGH25R	23	22	11	9	7	60	20	M6×20	3.05
PGH30R	28	26	14	12	9	80	20	M8×25	4.31
PGH35R	34	29	14	12	9	80	20	M8×25	6.14
PGH45R	45	38	20	17	14	105	22.5	M12×35	10.25
PGH55R	53	44	23	20	16	120	30	M14×45	14.92

SE Type

Metallic End Cap

2-15 SE Type - Metal End Cap Linear Guideway


2-15-1 General Information

- Use of Metallic parts; (if end seal is needed, the high-temperature rubber in end seal is available).
- Excellent temperature resistance; service temperature under 150 °C.

(2) Applications

- Heat treatment equipment,
- Applications using vacuums (no vapor dispersion from plastic or rubber)
- Welding equipment.

2-15-2 Structure

2-15-3 Specification

(1) Add "/ SE" after the specification of linear guideway

Ex. HGW25CA2R1000Z0PII + ZZ / SE

2-15-4 Dimensions of Bolt Cap

Table 2-15-1 Dimensions of Copper Bolt Cap

Item	Bolt Size	Diameter (m	m)	Item	Bolt Size	Diameter (mm)		
item	Dott Size	D	Н	iteiii	Dott Size	D	Н	
C3-C	M3	6.15	1.2	C8-C	M8	14.15	3.5	
C4-C	M4	7.65	1.2	C12-C	M12	20.15	4	
C5-C	M5	9.65	2.5	C14-C	M14	23.15	4	
C6-C	M6	11.15	2.8	C16-C	M16	26.15	4	

Table 2-15-2 Dimensions of Stainless Bolt Cap

Item	Bolt Size	Diameter (m	m)	Item	Bolt Size	Diameter (mm)		
ittiii	Dott Size	D	Н	item	Dott Size	D	Н	
C3-S	M3	6.15	1.2	C8-S	M8	14.22	3.5	
C4-S	M4	7.65	1.2	C12-S	M12	20.25	4	
C5-S	M5	9.65	2.5	C14-S	M14	23.25	4	
C6-S	M6	11.22	2.8	C16-S	M16	26.20	4	

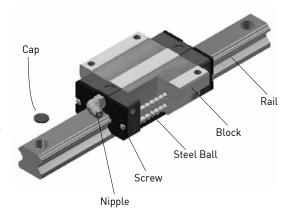
2-16 Stainless Steel Linear Guideway

2-16-1 Features

(1) Same features as standard linear guideway

- Stiffness, Hardness, Service Life, Dimensions remain the same

(2) Suitable for specific extreme environments


- With metal components, it can be used in low and medium vacuum environments

(3) Great corrosion resistance

-Block, Rail, Steel Balls, Grease nipple, Screws are all made of stainless steel material

Note: 1. Currently available in HG15C \times HG20C \times HG25C \times EG15C

- 2. Maximum length available is 2000mm
- 3. Add "/M" after the specification of linear guideway Ex. HGW25CA2R1600ZAPII/M

2-16-2 Suitable for below environments

Chemicals

Humid

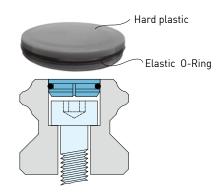
2-16-3 Main Applications

- Food processing, transportation and storage
- Liquid and gas processing equipment
- Vacuum equipment
- Cleanroom equipment

Note: Test conditions: -Salt Solution: 5 % NaCl

-Salt spray chamber temperature: 35°C±2°C

-Pressure: 1 bar


RC Type

Reinforced Cap

2-17 RC Type - Reinforced Cap

The RC Reinforced Cap consists of a piece of hard plastic and a piece of an elastic O-ring.

The hard plastic is made of synthetic resin which is characterized by oil resistance and abrasion resistance; the O-ring is made of rubber which is characterized by oil resistance and elasticity. The structure is shown on the illustration to the right.

2-17-1 Features of the Reinforced Cap

(1) Absorb the machining error

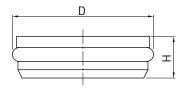
The elastic O-ring can eliminate some of the machining error caused during the creation of the mounting holes by maintaining the tight fit between the cap and the mounting hole.

(2) Vibration and shock resistance

The elastic O-ring can prevent the cap from loosening by absorbing the vibrations caused by external forces acting on the guideways.

(3) High performance dust protection

The reinforced cap is designed with an elastic 0-ring to contact the mounting hole perfectly by eliminating the clearance between the cap and the mounting hole resulting in excellent dust protection.


(4) Service life prolongation

The service life of the guideway increases due to the smoothness of the rail surface after installation of the Reinforced Cap preventing any damage to the end seals during operation.

2-17-2 Specification

- (1) Non-interchangeable type Add "+RC" after the specification of the linear guideway Ex. HGW25CC2R1600ZAPII+ZZ+RC
- (2) Interchangeable type -Add "+RC" after the specification of the linear guideway EX. HGR25R1600P +RC

2-17-3 Dimensions of Reinforced Cap

Model	Bolt Size	Diameter (mm)		Rail size								
Number	Bott Size	D	Н	HGR	EGR	WER	MGNR	RGR	CRG			
RC3	M3	6.15	1.3		15		12, 15					
RC4	M4	7.65	1.1	15	15U	17, 21, 27		15	15			
RC5	M5	9.8	3	20	20			20	20			
RC6	M6	11.4	2.8	25	25, 30	35		25	25			
RC8	M8	14.6	3.5	30, 35	35, 30U			30, 35	30, 35			
RC12	M12	20.5	4	45				45				
RC14	M14	23.5	5	55				55				
RC16	M16	26.6	5	65				65				

2-18 Grease

2-18-1 Grease Gun Unit

HIWIN offers different capacities and packages for grease gun reload, depending on various requirements. The grease gun could not only be equipped with normal grease nozzle, but also be replaced with other nozzles for other kinds of grease nipples.

Grease Nipple: M6, PT1/8

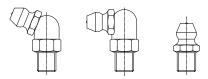


Table 2-18-1

Model no.	GN-80M	GN-400C
Dimen- sion	(108) 222 (20)	Nozzle (108) 320 (20)
Spec.	1. Working pressure: 15 MPa 2. Output: 0.5~0.6 c.c./Stroke 3. Weight: 520 g (grease excluded) 4. Grease reload: 70 g flexible tube or 120 ml bulk loading	1. Working pressure: 15 MPa 2. Output: 0.8~0.9 c.c./Stroke 3. Weight: 1150 g (grease excluded) 4. Grease reload: 14 o.z. cartridge pipe or 400 ml bulk loading

Grease

2-18-2 Grease Nozzle Kit (Model no. GNZ-05-BOX)

HIWIN grease nozzle kit with various nozzles offers grease reload for different kinds of grease nipples.

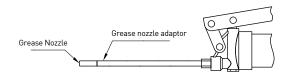


Table 2-18-2 Grease Nozzle Adaptor

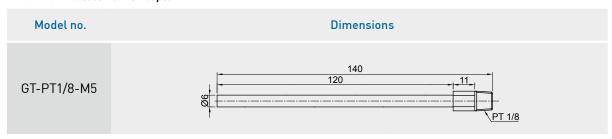


Table 2-18-3 Grease Nozzle

Table 2-10-5 Glease N	···	
Model no.	Dimensions	Lubricating Type
GNZ-L-M5	02 13 5 M5x0.5P 20	Minimized grease hole
GNZ-P-M5	25 M5x0.5P	Minimized grease hole
GNZ-R-M5	25 M5x0.5P	Dent nipple (DIN3405)
GNZ-C-M5	25 ————————————————————————————————————	Nipple (M3, M4 thread)

2-18-3 Grease

HIWIN offers various lubricants for environment such as general type, heavy load, low particle emitting, high speed, etc. According to the ways of grease reload, choices for different capacities and packages of grease are available.

Packing: 70g Flexible tube, 400g Pipe, 1kg Can

HIWIN G01Grease of Heavy-loading

Features:

- 1. Excellent wear and pressure resistance under heavy load condition
- 2. Low friction in low temperatures
- 3. Water resistant
- 4. Available for central lubrication system

Basic Properties:

Color	Color				
Base Oil	Mineral oil				
Consistency E	Polyurea				
Additive	Solid lubricant				
Service Tempe	-15~115				
NLGI-grade (0	.1mm)	310-340			
Viscosity (cst)	40°C	500			
VISCOSITY (CST)	100°C	30			
Drop Point (°C	> 170				

HIWIN G02 Grease of Low Particle-emitting

Features:

- 1. Low particle emitting rate and suitable for clean room environment
- 2. Wear resistant
- 3. For long term usage and wide temperature range
- 4. Consisting of synthetic hydrocarbon oil and special calcium soap, also resistant to oxidation and corrosion

Basic Properties:

Color		Beige		
Base Oil		Synthetic hydrocarbon oil		
Consistency En	nhancer	Special calcium soap		
Service Tempe	rature(°C)	-30~140		
NLGI-grade (0	.1mm)	265-295		
Viceosity (est)	40° C	100		
Viscosity (cst)	100°C	15		
Drop Point (°C)		> 180		

HIWIN G03 Grease of Low Particle-emitting (High Speed)

Features:

- 1. Low particle emitting rate and suitable for clean room environment
- 2. Wear resistant
- 3. For long term usage and wear resistance under high speed condition

Basic Properties:

Color		Beige		
Base Oil		Synthetic hydrocarbon oil		
Consistency Er	hancer	Special calcium soap		
Service Tempe	rature (°C)	-45~125		
NLGI-grade (0.	1mm)	265-295		
Vincesity (not)	40° C	30		
Viscosity (cst)	100°C	5.9		
Drop Point(°C)		> 210		

HIWIN G04 Grease of High Speed

Features:

- 1. Wear resistant under high speed condition
- 2. Low friction under high speed condition
- 3. Water resistant

Basic Properties:

Color		Beige		
Base Oil		Ester/PA0		
Consistency Er	hancer	Lithium soap		
Service Tempe	rature (°C)	-35~120		
NLGI-grade (0.	.1mm)	260-280		
Viscosity (cst)	40°C	25		
VISCOSITY (CST)	100°C	6		
Drop Point(°C)		> 225		

Grease

HIWIN G05 Grease of General Type

Features:

- 1. Wear resistance
- 2. Low friction resistance
- 3. Long-life
- 4. Low oxidation tendency
- 5. Water resistant
- 6. Corrosion resistant

Basic Properties:

Color	Brown		
Base Oil	Mineral		
Consistency Enhancer	Lithium Soap		
Service Temperature (°C)	-15~120		
NLGI-grade (0.1mm)	270-285		
Viscosity (cst) 40°C	200		
Drop Point(°C)	190		

HIWIN G07 Grease for Low Temperature Condition

Features:

- 1. For low temperature condition: -50°C to 0°C.
- 2. Low starting and running torques particularly at low temperatures

Basic Properties:

Color		Beige	
Base Oil		Mineral	
Consistency Enhancer		Lithium- calcium soap	
Service Temperature (°C)		-50~80	
NLGI-grade (0.1mm)		310-340	
Viscosity (cst)	40°C	14	
	100°C	3	

HIWIN G06 Grease for High Frequency or Short-stroke Condition

Features:

- 1. Well wear resistance under high frequency(1.5~3G) or short-stroke condition.
- 2. Long term grease, suitable for wide temperature range
- 3. Can be used in plastic/steel and plastic/ plastic components, compatible with elastomers and plastic materials

Basic Properties:

Color		Beige	
Base Oil		PA0	
Consistency Enhancer		Special lithium soap	
Service Temperature (°C)		-45~130	
NLGI-grade (0.1mm)		265-295	
Viscosity (cst)	40° C	32	
	100°C	6	
Drop Point(°C)		190	

3. HIWIN Linear Guideway Inquiry Form

Customer:		Date:			
Tel.	Fax.	Confirm by			
Machine Type		Drawing No.			
Axis	□ X □ Y □ Z □ Other ()			
Install Position					
Model No.					
Rail Mounting	\square R (from top) \square T (from bottom) \square U (from top with	bolt hole enlarged)			
Dust Protection	☐ Double end seal + Bottom seal (DD) ☐ Double end seal ☐ End seal + Scraper + Bottom seal (ZZ) ☐ End seal + Bottom	+ Scraper + Bottom seal (KK) m seal (U)			
Special Option	□ Steel end cap (SE) □ Self Lubrication (E2)				
Lubrication	☐ Grease nipple (Grease) ☐ Piping joint (Oil) ☐ Other				
Butt-joint	□ No □ Yes				
No. of Rail Per Axis	□ I (1) □ II (2) □ III (3)	☐ Other			
Reference Surface and Grease Nipple Orientation	Please mark "X "in the to indicate the grease nipple orientation. E1 B B B B C C C C C C C C C	E2 E4			

мемо	

Linear Guideway Technical Information

Publication Date: November 1998, first edition

Print Date: March 2022, 23rd edition

- 1. HIWIN is a registered trademark of HIWIN Technologies Corp.. For your protection, avoid buying counterfeit products from unknown sources.
- 2. Actual products may differ from specifications and photos provided in this catalog. These differences may be the result of various factors including product improvements.
- 3. HIWIN website for patented product directory: http://www.hiwin.tw/Products/Products_patents.aspx
- 4. HIWIN will not sell or export products or processes restricted under the "Foreign Trade Act" or related regulations. Export of restricted products should be approved by proper authorities in accordance with relevant laws and shall not be used to manufacture or develop nuclear, biochemical, missiles or other weapons.

HIWIN GmbH

OFFENBURG, GERMANY www.hiwin.de www.hiwin.eu info@hiwin.de

HIWIN JAPAN

KOBE · TOKYO · NAGOYA · NAGANO · TOHOKU · SHIZUOKA · HOKURIKU · HIROSHIMA · FUKUOKA · KUMAMOTO, JAPAN www.hiwin.co.jp info@hiwin.co.jp

HIWIN USA

CHICAGO, U.S.A. www.hiwin.us info@hiwin.com

HIWIN Srl

BRUGHERIO, ITALY www.hiwin.it info@hiwin.it

HIWIN Schweiz GmbH

JONA, SWITZERLAND www.hiwin.ch info@hiwin.ch

HIWIN s.r.o.

BRNO, CZECH REPUBLIC www.hiwin.cz info@hiwin.cz

HIWIN FRANCE

STRASBOURG, FRANCE www.hiwin.fr info@hiwin.de

HIWIN SINGAPORE

SINGAPORE www.hiwin.sg info@hiwin.sg

HIWIN KOREA

SUWON · CHANGWON, KOREA www.hiwin.kr info@hiwin.kr

HIWIN CHINA

SUZHOU, CHINA www.hiwin.cn info@hiwin.cn

Mega-Fabs Motion Systems, Ltd.

HAIFA, ISRAEL www.mega-fabs.com info@mega-fabs.com

HIWIN TECHNOLOGIES CORP.

No. 7, Jingke Road, Taichung Precision Machinery Park, Taichung 40852, Taiwan Tel: +886-4-23594510 Fax: +886-4-23594420 www.hiwin.tw business@hiwin.tw